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Amortized Complexity of Data StructuresRajamani SundarAdvisor: Ravi BoppanaAbstractThis thesis investigates the amortized complexity of some fundamental data structureproblems and introduces interesting ideas for proving lower bounds on amortized com-plexity and for performing amortized analysis. The problems are as follows:� Dictionary Problem: A dictionary is a dynamic set that supports searches of ele-ments and changes under insertions and deletions of elements. It is open whetherthere exists a dictionary data structure that takes constant amortized time peroperation and uses space polynomial in the dictionary size. We prove that dictio-nary operations require log-logarithmic amortized time under a multilevel hashingmodel that is based on Yao's cell probe model.� Splay Algorithm's Analysis: Splay is a simple, e�cient algorithm for searchingbinary search trees, devised by Sleator and Tarjan, that uses rotations to reorganizethe tree. Tarjan conjectured that Splay takes linear time to process deque operationsequences on a binary tree and proved a special case of this conjecture called theScanning Theorem. We prove tight bounds on the maximum numbers of varioustypes of right rotations in a sequence of right rotations performed on a binarytree. One of the lower bounds refutes a conjecture of Sleator. We apply the upperbounds to obtain a nearly linear upper bound for Tarjan's conjecture. We give twonew proofs of the Scanning Theorem, one of which is a potential-based proof thatsolves a problem of Tarjan.� Set Equality Problem: The task of maintaining a dynamic collection of sets undervarious operations arises in many applications. We devise a fast data structurefor maintaining sets under equality-tests and under creations of new sets throughinsertions and deletions of elements. Equality-tests require constant time and set-creations require logarithmic amortized time. This improves previous solutions.i
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Chapter 1Introduction1.1 Amortized ComplexityIn many applications of data structures, the data structure is embedded within somealgorithm that performs successive operations on it. In these applications, we are inter-ested only in the time taken by the data structure to process operation sequences as awhole and not in the time spent on isolated operations. Amortized data structures aredata structures tailored to such applications: these data structures may perform poorlyon a few individual operations but perform very well on all operation sequences. Thenatural performance measure for an amortized data structure is its amortized complexity,de�ned to be the maximum cost of operation sequences performed on the data structureas a function of the lengths of the sequences. Amortized data structures are appealingbecause they dispense with complicated constraints and associated information presentin data structures that achieve a fast performance on all operations and they use simplereorganizing heuristics, instead, to achieve a fast amortized performance. Some exam-ples of these data structures are the compressed tree data structures for the Union-�ndProblem [1,23,32], the Splay Tree [23,28,32], and the Pairing Heap [16].Amortized data structures are simple to describe but their performance analysis isoften quite involved. Since operation sequences on these data structures are mixturesof operations of varying costs that very �nely interact with one another it is tricky toaccurately estimate their amortized complexity. Of the three amortized data structuresmentioned above only the �rst one has been analyzed thoroughly; even its analysis wasaccomplished only several years after the data structure was originally conceived. The1
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2 CHAPTER 1. INTRODUCTIONcomplete analysis of the other two is still open.A useful framework for performing amortized analysis involves de�ning an appro-priate potential function for the data structure [34]. In this framework, each state ofthe data structure is assigned a real number called its potential. The amortized cost ofa data structure operation is de�ned to be the actual cost incurred by that operationplus the increase in potential it causes through change of state. The total cost of anoperation sequence performed on the data structure equals the total amortized cost ofthe operations in the sequence plus the decrease in potential from the initial state to thestate at the end of the operation sequence. Choosing a suitable potential function thatyields a sharp estimate on the amortized complexity is a task that demands ingenuity.We illustrate the potential framework through a simple example. A priority queuewith attrition (PQA) is a dynamic set of real numbers supporting two operations:Deletemin deletes and returns the smallest element of the set; Insert(x) deletes allelements of the set greater than x and adds x to the set. A PQA can be representedby a sorted list of its elements. In this representation, Deletemin takes constant time,and Insert takes time proportional to the number of deleted elements. If we de�ne thepotential of the data structure equal to the number of elements it contains then PQAoperations take constant amortized time; PQA operation sequences take linear time.The notions of amortized complexity and amortized cost are usually used in a muchwider sense than de�ned above. Amortized complexity is usually a maximizing functionof several parameters of the operation sequences, instead of their length alone. Theamortized costs of operations are usually a set of functions of the operation sequenceparameters that, when added together, yield a good estimate of the amortized complex-ity. For example, the compressed tree data structures for the Union-�nd Problem haveamortized complexity equal to O(n+m�(m+ n; n)), and take constant time on Unionoperations and O(�(m+n; n)) amortized time on Find operations, where �(m;n) is aninverse function of the Ackerman function, and m and n respectively denote the totalnumber of Finds and the total number of Unions in the operation sequence [23,32].Let us relate amortized complexity to other measures of data structure performance.There exist data structure problems whose amortized complexities are lower than theirworst-case complexities; for instance, the Union-�nd Problem is solvable in nearly con-stant amortized time per operation but requires nearly logarithmic worst-case time per
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1.2. OUR WORK 3operation [7,15,32]. There probably exist problems whose randomized (or average-case)complexities are lower than their amortized complexities, but this is yet to be proven; forinstance, the Dictionary Problem and certain other problems that involve testing equal-ity of objects appear to be good candidates for this class. The amortized complexity ofa dynamic data structure problem is often intimately related to the complexity of itsstatic version via transformations of solutions/adversaries of one problem into another[6,39].An appropriate model for proving lower bounds on the amortized complexity of adata structure problem is Yao's cell probe model [38]. This model abstracts out thearithmetic and indexing capabilities of random access machines without ignoring theirword-size limitations. The model has a memory consisting of an array of b-bit locations.Data structure operations are performed in a series of memory probes in which the nextprobe location is always computed as a general function of the values so far read. In thismodel, Fredman and Saks [15] proved tight lower bounds on the amortized complexityof many problems, including the Union-�nd Problem. The only other interesting lowerbound known in this model is for a static data structure problem, due to Ajtai [3]. Thecomplexity of many other problems, notably, the Dictionary Problem and the PriorityQueue Problem, remains unexplored.This completes our introduction to amortized complexity. Further information onthis subject can be found in [23,32,34].1.2 Our WorkThis thesis investigates the amortized complexity of some fundamental data structureproblems. We introduce interesting ideas for proving lower bounds on amortized com-plexity and for performing amortized analysis that enable progress towards resolvingsome open questions. The problems studied are as follows.In Chapter 2, we study the amortized complexity of the Dictionary Problem. A dic-tionary is a dynamic set that supports searches, insertions, and deletions of elements. Itis an open problem whether a dictionary can be maintained in constant amortized timeper operation using space polynomial in the dictionary size; we denote the dictionarysize by n. While hashing schemes solve the problem in constant amortized time per oper-
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4 CHAPTER 1. INTRODUCTIONation on the average or using randomness, the best deterministic solution (uses hashingand) takes �(logn= log logn) amortized time per operation. We study the deterministiccomplexity of the dictionary problem under a multilevel hashing model that is based onYao's cell probe model, and prove that dictionary operations require 
(log logn) amor-tized time in this model. Our model encompasses many known solutions to the dictionaryproblem, and our result is the �rst nontrivial lower bound for the problem in a reason-ably general model that takes into account the limited wordsize of memory locationsand realistically measures the cost of update operations. This lower bound separates thedeterministic and randomized complexities of the problem under this model.In Chapter 3, we study a problem arising in the analysis of Splay, a rotation-based al-gorithm for searching binary search trees that was devised by Sleator and Tarjan. Tarjanproved that Splay takes linear time to scan the nodes of a binary tree in symmetric order;this result is called the Scanning Theorem. More generally, he conjectured that Splaytakes linear time to process deque operation sequences on a binary tree; this conjecture iscalled the Deque Conjecture. We prove that Splay takes linear-times-inverse-Ackermantime to process deque operation sequences. In the process, we obtain tight bounds onsome interesting combinatorial problems involving rotation sequences on binary trees.These problems arose from studying a conjecture of Sleator that we refute. We give twonew proofs of the Scanning Theorem. One proof is a potential-based proof; Tarjan hadoriginally posed the problem of �nding such a proof. The other proof uses induction.In Chapter 4, we study the problem of maintaining a dynamic collection of sets underequality-tests of two sets and under creations of new sets through insertions and deletionsof elements. We devise a data structure that takes constant time on equality-tests andlogarithmic amortized time on set-creations. The data structure derandomizes a previousrandomized data structure, due to Pugh and Teitelbaum, that took logarithmic expectedamortized time on set-creations.Some of our work has been published before. The work on the Deque Conjecture wasreported in [30]. The work on the Set Equality Problem was reported in a joint-paperwith Robert E. Tarjan [31] that also dealt with other related problems.
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Chapter 2The Dictionary ProblemThe Dictionary Problem is a classical data structure problem arising in many applicationssuch as symbol table management in compilers and language processors. The problemis to maintain a dynamic set under the operations of search, insertion, and deletion ofelements. The problem can be solved in constant time per operation using a bit vectorthat has a separate bit for each element of the universe indicating its prescence in theset. This simple solution is unsatisfactory since it uses space proportional to the universesize and the dictionary is usually very small compared to the universe. Does there exist aconstant-amortized-time solution that uses only space polynomial in the dictionary size?In this chapter, we study the amortized complexity of the dictionary problem undera multilevel hashing model that is based on Yao's cell probe model, and prove thatdictionary operations require log-logarithmic amortized time in this model.2.1 IntroductionThe Dictionary Problem is to maintain a dynamic set, called a dictionary, over a �nite,ordered universe U under the following operations:� Search(x): Determine whether element x is in the dictionary; if so, �nd a memorylocation storing x.� Insert(x): Add element x to the dictionary.� Delete(x): Remove element x from the dictionary.5
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6 CHAPTER 2. THE DICTIONARY PROBLEMThe dictionary is initially the empty set. We would like to know how fast the problemcan be solved using only space polynomial in the dictionary size (denoted by n) on aRAM with (log jU j)-bit memory words. Here we are restricting the space used in termsof the dictionary size in order to exclude the trivial bit vector solution and a family ofits generalizations, due to Willard [37], that process dictionary operations in constanttime and use space depending on the size of the universe.The Dictionary Problem has been extensively studied and has a rich variety of solu-tions.Balanced search trees solve the problem in O(logn) time per operation and use O(n)space [1,21,23,32]. Self-adjusting search trees such as Sleator and Tarjan's Splay Tree[28] and Galperin and Rivest's Scapegoat Tree [18] take O(logn) amortized time peroperation. There is no hope of improving the log n behaviour of search trees since theyuse only comparisons to perform searches.Hashing schemes solve the problem in constant expected time per operation anduse O(n) space. Uniform hashing performs dictionary operations in constant expectedtime when the operations are randomly chosen from a uniform distribution [21,1]; thespace used is O(n). Universal hashing is an improved randomized hashing scheme thatperforms searches in constant expected time and performs updates in constant expectedamortized time [8]; the expectation, here, is over the random hash functions chosenby the algorithm and the bounds apply to all possible operation sequences. Dynamicperfect hashing [13] (see also [2,14]) is a further improvement that performs searches inconstant worst-case time and performs updates in constant expected amortized time.All of the above hashing schemes fall under the general category of multilevel hashingschemes. Roughly speaking, a multilevel hashing scheme consists of a hierarchicallyorganized system of hash functions that successively partition the dictionary into �nerpieces until all elements in the dictionary have been separated plus an algorithm toupdate the con�guration after each dictionary operation.The fastest deterministic solution to the problem, at present, is a multilevel hashingscheme, due to Fredman and Willard [17], that takes O(logn= log logn) amortized timeper operation and uses O(n) space.It has been possible to prove nonconstant lower bounds for the problem on certain de-terministic hashing models. Dietzfelbinger et al. [13] showed a tight bound of �(logn) on
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2.1. INTRODUCTION 7the amortized complexity of dictionary operations under a wordsize-independent multi-level hashing model that does not include search trees. Mehlhorn et al. [24] strengthenedthis model so that it includes search trees and showed that dictionary operations have�(log log n) amortized complexity under their model. These models assume that mem-ory locations have an unbounded wordsize and overestimate the costs of operations; thissimpli�es the task of proving lower bounds but the models are not realistic. If memorylocations have a su�ciently large wordsize, the problem is solvable in constant time peroperation (Paul and Simon [25]; Ajtai et al. [4]). When memory locations can only rep-resent a single element of the universe, however, the best available solution is Fredmanand Willard's O(logn= log log n)-time solution [17].We prove a nonconstant lower bound for the Dictionary Problem under a multilevelhashing model, based on Yao's cell probe model, that takes into account the limitedwordsize of memory locations and realistically measures the costs of operations.We de�ne a generic multilevel hashing model for solving the Dictionary Problemfrom which various lower bound models for the problem can be derived by specifyingsuitable cost measures for the operations. The model has a vertically organized memorythat consists of a root location at level 1 and an array of at most m locations at level i,for each i � 2. Memory locations have b bits each, for some b � log jU j. Each memorylocation stores some c di�erent elements of the universe plus a (b� c log jU j)-bit valuethat guides search operations; here the number of elements stored at a location variesover time, and is not constant. A search operation locates an element in memory byperforming a sequence of memory probes: the �rst probe of the sequence always readsthe root location and the i-th probe, for i � 2, reads a location at level i that is com-puted as a general function of the sequence of i � 1 values so far read and the elementbeing searched. The operation either locates the element in some location after a seriesof probes or concludes that the element is not in the dictionary after a series of unsuc-cessful probes. A search operation �nally replaces the current memory con�guration bya new con�guration, representing the same dictionary, by computing a general functionof the current con�guration. An update operation simply replaces the current memorycon�guration by a new con�guration that represents the new dictionary by computing ageneral function of the current con�guration.
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8 CHAPTER 2. THE DICTIONARY PROBLEMWe de�ne a lower bound model for the problem by imposing a measure of operationcosts on the generic model. The Hamming cost of an operation is de�ned as the maximumnumber of locations at any level whose contents change due to the operation. The costof a search operation is de�ned as the number of read probes performed by the operation(called the search cost of the operation) plus the Hamming cost of the operation. Thecost of an update operation is de�ned as its Hamming cost. When this cost measureis imposed on the generic model we get a lower bound model called the Hamming costmodel.We prove our lower bound in the following model that has a di�erent cost measurefrom the Hamming cost model. The search path of an element x of U in a memorycon�guration C is de�ned as the sequence of locations probed by a search operation onx performed in con�guration C. We say that an operation refreshes a memory locationl if there is some element x in the �nal dictionary such that l lies on the search pathof x after the operation but l did not lie on the search path of x before the operation.The refresh cost of an operation is de�ned as the maximum number of locations at anylevel that get refreshed by the operation. De�ne the cost of an operation as the sum ofthe search cost and the refresh cost of the operation. The lower bound model with thiscost measure is called the refresh cost model. The di�erence between this model andthe Hamming cost model is that the refresh cost measure is sensitive to locations thatparticipate in rerouting the search paths of dictionary elements during an operation,on the other hand, the Hamming cost measure is sensitive to locations whose contentschange.A nonconstant lower bound for the Dictionary Problem in the Hamming cost modelwould translate into a similar lower bound for the problem in the cell probe model. Webelieve that such a lower bound exists, but we can only prove a lower bound underthe refresh cost model. The refresh cost model seems to be incomparable in power tothe cell probe model and to the Hamming cost model. The justi�cation for the refreshcost model is that, in realistic hashing schemes, an operation might have to read, and,if necessary, modify, the locations it refreshes in order to correctly reroute the searchpaths of dictionary elements. The refresh cost model encompasses many of the knownsolutions to the dictionary problem, but not all of them; for instance, the model includesB-trees, red-black trees, and various hashing schemes, but the class of rotations-based
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2.2. SINGLE-LEVEL HASHING MODEL 9search trees is not included.Our lower bound is given by:Theorem 2.1 Consider the refresh cost multilevel hashing model with at most m mem-ory locations per level, a universe U , and a wordsize b. Let n be a positive integersatisfying jU j � mlog logn. Consider dictionary operation sequences during which themaximum dictionary size is n. Under this model, the amortized complexity of dictionaryoperations equals 
(log(logn= log b)).In a typical situation where jU j = mlog logn, m = poly(n), and b = log jU j, the theoremyields a lower bound of 
(log log n) on the amortized complexity of dictionary oper-ations. This lower bound separates the deterministic and randomized complexities ofhashing schemes in the refresh cost model, since this model encompasses randomizedhashing schemes like universal hashing [8] and dynamic perfect hashing [13] that processdictionary operations in constant randomized amortized time.The proof technique of the theorem can be used to show that single-level hashingschemes in the Hamming cost model require 
(n�) amortized time to process dictionaryoperations, for some constant �. We hope that the proof technique will be helpful inshowing a general nonconstant lower bound for the dictionary problem in the Hammingcost model.The chapter is organized as follows. In Section 2.2, we introduce the basic ideasneeded to prove Theorem 2.1 by proving a nonconstant lower bound under the simplermodel of single-level hashing. In Section 2.3, we prove the theorem.2.2 Single-level Hashing ModelIn this section, we prove a nearly linear lower bound for the Dictionary Problem underthe refresh cost single-level hashing model.We de�ne the lower bound model. The model consists of an array ofm locations eachcapable of storing an element of U , a family of at most 2b hash functions from U to thearray, and a b-bit root location storing a hash function from the family. The root hashfunction is always chosen so that it sends the elements of the dictionary into di�erentlocations, and collisions of elements are forbidden; in general, when a hash function sends
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10 CHAPTER 2. THE DICTIONARY PROBLEMthe elements of a set into distinct locations it is called a perfect hash function [14] for theset and it is said to shatter the set. Search operations are performed in two probes: the�rst probe reads the hash function from the root location; the second probe checks if theelement is present in the array location where it is sent by the hash function. An updateoperation can change the root hash function and can write into some array locations inorder to appropriately relocate the dictionary elements. The cost of a search operationis 2 units. The cost of an update operation is its refresh cost, which equals the numberof dictionary elements that are relocated during the operation.The lower bound for single-level hashing is given by:Theorem 2.2 Consider the refresh cost single-level hashing model with an array of mmemory locations, a universe U , and a b-bit root location. Assume that jU j � 2m.Consider dictionary operation sequences during which the maximum dictionary size isat most n, where n � m. Under this model, the amortized complexity of dictionaryoperations equals 
(n=b).A typical situation to apply this theorem is when b = log jU j and m and jU j are polyno-mial in n. Under these assumptions, the theorem yields a lower bound of 
(n= logn) onthe amortized complexity of dictionary operations under the single-level hashing model.The main idea behind the proof of the theorem is an adversary who keeps creatingrandom collisions in U . Any hashing scheme with a small hash functions family can notsucceed against this adversary. The proof uses the following sampling lemma, due toHoe�ding [20], that a random sample closely behaves like the whole population.Lemma 2.1 (Binary Sampling Lemma) Let k � 1 and let 0 < � < � < 1. Considera population of at least k elements of which some �-fraction of the elements are coloredred. A random k-subset of the population has more than �k red elements with probabilityat least (1� e�c�;�k), wherec�;� = ( (�� �)2=(2�(1� �)) if �� � < 1� �2(�� �)2 otherwise.Let us prove the theorem. Denote the amortized cost per update operation incurredby a hashing scheme by w. We prove that e
(n=w) hash functions are needed by the
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2.2. SINGLE-LEVEL HASHING MODEL 11hashing scheme in order to successfully process all sequences of O(n) insertions. Thiswould imply the theorem. The proof of this result is organized in a series of steps.A hash function is called uniform if it sends the same number of elements into eachlocation. In Section 2.2.1, we prove the result for the case when the hash functions usedby the hashing scheme are all uniform and the update cost is bounded in the worst-case. In Section 2.2.2, we handle nonuniform hash functions. In Section 2.2.3, we handleamortized update costs.2.2.1 Uniform Hash Functions and Worst-case ComplexityIn this section, we prove that any single-level hashing scheme in the refresh cost modelthat uses only uniform hash functions and has worst-case update cost w needs at leaste
(n=w) hash functions in order to handle all sequences of O(n) insertions.The adversary performs two batches of insertions: a large batch followed by a smallbatch. The large batch is a random n-subset of U . Let h denote the hash function usedafter the large batch; h is a random variable. The small batch is constructed as follows:Randomly select k = n=cw locations, where c is a constant. For each selected locationpick a random pair of elements of U that h sends into that location. The small batchis the union of these pairs. Since we assumed that jU j � 2m and that h is uniform, hsends at least two elements of U into each location.The following lemma gives the lower bound on the size of the hash functions family.Lemma 2.2 Any hashing scheme requires e
(k) hash functions in order to succeed againstthe adversary.The idea behind the proof of this lemma is that any �xed pair of hash functions (h; g)that are respectively used after the two batches has a low probability of success againstthe adversary. For if h and g are su�ciently similar then g can not shatter the smallbatch. On the other hand if h and g are su�ciently dissimilar then too many elementsin the large batch will change locations during the small batch.Proof of Lemma 2.2. Consider a pair of hash functions (h; g) that are respectivelyused after the two batches. We compute the probability of success of the hashing schemeagainst the adversary using this pair of hash functions. De�ne �(h; g) = the number ofelements of U in which h and g di�er. Two cases have to be considered:
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12 CHAPTER 2. THE DICTIONARY PROBLEMCase 1. �(h; g) � jU j=8: By the Binary Sampling Lemma, the large batch has morethan n=16 elements that di�er in h and g with probability at least (1 � e�c1=8;1=16n).Thus the update cost incurred by (h; g) during the small batch exceeds n=16 with thisprobability. Setting k = n=32w, the maximum update cost allowed during the smallbatch equals n=16. Hence Pr[(h; g) succeeds] � e�c1=8;1=16n.Case 2. �(h; g) � jU j=8: A location is called similar if g sends into that locationgreater than (1=2)-fraction of the elements that h sends into it. At least (3=4)-fractionof the locations are similar locations, since h and g di�er in at most (1=8)-fraction of U .By the Binary Sampling Lemma, the random set of k locations selected during the smallbatch contains more than k=2 similar locations with probability at least (1� e�c3=4;1=2k).Consider a set of k locations, comprising at least k=2 similar locations, that are usedto construct the small batch. g shatters a random pair of elements sent by h into asimilar location with probability at most 3=4. Hence g shatters a random small batchconstructed using the above locations with probability at most (3=4)k=2.Combining the above calculations, Pr[(h; g) succeeds] � e�c3=4;1=2k + (3=4)k=2.We are ready to compute the constants.c1=8;1=16 = 1=56; c3=4;1=2 = 1=6; (1=2)ln(4=3) > 1=7:For su�ciently large k, the success probability of (h; g) is at most e�k=8. It follows that atleast ek=16 hash functions are needed by the hashing scheme in order to succeed againstthe adversary.2.2.2 Nonuniform Hash FunctionsIn this section, we extend the lower bound of the previous section to families of nonuni-form hash functions.The adversary once again inserts a large batch which is a random n-subset of U andthen inserts a small batch. The small batch is constructed based on the hash functionh that is used by the hashing scheme after the large batch. A multiple location of h is alocation into which h sends two or more elements of U . Focus on the subuniverse �U ofelements of U that h sends into its multiple locations. Select a random k-subset of �U ,for k = n=cw. For each element of the subset select a random element of �U that collideswith it under h. The small batch consists of the subset and the elements selected.



www.manaraa.com

2.3. MULTILEVEL HASHING MODEL 13Let us see why Lemma 2.2 still holds for this adversary. Once again the idea is toshow that any �xed pair of hash functions (h; g) has a low probability of success. Thecase when �(h; g)� jU j=8 is handled as before. Consider the case �(h; g)� jU j=8. Sincej �U j � jU j=2, h and g di�er in at most (1=4)-fraction of �U . An element of �U that issent by both h and g into a similar location is called a similar element. At least (1=4)-fraction of �U are similar elements. By the Binary Sampling Lemma, we can expect atleast k=8 elements of the k-subset from which the small batch is constructed to be similarelements. Now if two of these similar elements collide under h then g fails to shatter thesmall batch. So suppose that h and g send all the similar elements of the small batchinto di�erent locations. In this case, as in the previous section, it is easy to see that gfails to shatter the small batch with probability greater than (1=2)k=8. This completesthe second case and the proof that e
(k) hash functions are needed to succeed againstthe adversary.2.2.3 AmortizationIn this section, we incorporate amortization into the previous section's argument. Letw denote the amortized cost per update operation incurred by the hashing scheme.The adversary of the previous section is modi�ed by performing a greedy sequence ofinsertions between the two batches. Immediately after the large batch, the adversaryperforms a maximal sequence of insertions � such that � incurs an update cost of morethan 2wj�j. Then the small batch is performed as before based on the hash function hused after �. Observe that j�j is at most n, so only O(n) insertions are totally performed.The maximality of � ensures that the total update cost incurred during the small batchis at most 4wk. Hence we can apply the argument of the previous section to obtain alower bound on the hash functions family.2.3 Multilevel Hashing ModelIn this section, we prove a log-logarithmic lower bound for the Dictionary Problem underthe refresh cost multilevel hashing model.The main idea behind the proof is a randomized adversary who alternately performsgreedy searches of the dictionary elements and creates random collisions at the various
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14 CHAPTER 2. THE DICTIONARY PROBLEMlevels of the multilevel hashing scheme, descending the levels of the scheme. The colli-sions force the scheme to either incur a large cost on searches or incur a large cost incompressing the dictionary to few levels. The collisions are created in batches of inser-tions. Each batch is constructed by selecting a set of locations from the �rst i levels, byfocusing on the subuniverse of elements of U whose search paths involve just these loca-tions during the �rst i probes, and by picking a random subset from the subuniverse ofappropriate size; the subset is always chosen to be several times larger than the numberof selected locations in order to create collisions.We sketch the lower bound proof. Let us con�ne ourselves to worst-case complexitysince amortized complexity can be easily handled, as in the single-level hashing lowerbound, by appropriately performing greedy searches and greedy insertions during theadversary sequence. The adversary is de�ned recursively on levels, and the proof hasan inductive structure that is reminiscent of a previous lower bound for a static datastructure problem in the cell probe model, due to Ajtai [3]. In order to carry out theinduction, we need to prove a stronger result that applies to a more general hashingmodel, called the partial hashing model. In a partial hashing scheme, each value ofthe root location determines a working subuniverse of U on which the scheme supportsdictionary operations. The lower bound applies to partial hashing schemes that work,occasionally, on a dense subuniverse of U ; we show that such schemes fail, almost surely,against the adversary.The main feature of the proof is the handling of nonuniform root hash functions. Thevalue stored at the root location of the hashing scheme de�nes a partial hash functionwhich is essentially the second probe function used by the scheme to perform searches.We say that this hash function is narrow if it sends a constant fraction of the universeinto a small set of level-2 locations; otherwise the hash function is said to be wide.The adversary �rst recursively performs a narrow phase of insertion batches in U thatforce the scheme to use narrow hash functions and then recursively performs a widephase of much smaller insertion batches within a random subuniverse �U of U . The widephase is not always performed; it is performed only if the narrow phase gets prematurelytruncated because the hashing scheme has stopped using narrow hash functions. Theadversary consists of two di�erent phases because the hashing scheme behaves di�erentlydepending on whether it mostly uses narrow hash functions or it mostly uses wide hash
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2.3. MULTILEVEL HASHING MODEL 15functions and two phases are needed to fool all hashing schemes. We show that theprobability of success of the hashing scheme through the completion of either of thephases is small. We analyze the narrow phase using induction; we analyze the widephase by showing that �xed sequences of root hash functions used during this phasehave a low success probability, using some random sampling lemmas and induction.The proof of the lower bound is organized as follows. In Section 2.3.1, we describethe partial hashing model. In Section 2.3.2, we describe the adversary used for proving alower bound on worst-case complexity. In Section 2.3.3, we state and prove two technicalrandom sampling lemmas needed to analyze the wide phase. In Section 2.3.4, we provethe worst-case lower bound. In Section 2.3.5, we handle amortized complexity.2.3.1 Partial Hashing ModelIn this section, we describe the partial hashing model.A partial hashing scheme is a hashing scheme that processes dictionary operationsin a tower of universes U1 � U2 � � � � � Uk . Uk is called the working universe of thescheme. The scheme has a vertically organized memory consisting of a (Wb)-bit rootlocation and an in�nite word-size advice location at level-1, and an array of at most mb-bit locations at each level i � 2; we require that b � log jU1j so that a location canstore any element of the universes. Each possible value v of the root location de�nes atower of subuniverses S1(v) � S2(v) � � � � � Sk(v) such that Si(v) � Ui for all i. Sk(v)is called the working subuniverse corresponding to value v. A search operation startsby probing the root location; if the element being searched is in the current workingsubuniverse, then the search proceeds downwards as in the standard multilevel hashingmodel; if the element is not in the current working subuniverse, then the search operationprobes the advice location and continues downwards in the standard fashion. An updateoperation changes the memory con�guration; a search operation can also change thememory con�guration. The search cost of an operation is de�ned as the number of readprobes performed by the operation, not counting probes on the advice location. Therefresh cost of an operation is a suitably de�ned number that is at least the maximumnumber of locations at any level that get refreshed by the operation. The cost of anoperation is de�ned to be the sum of its search cost and its refresh cost. This completesthe description of the model.
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16 CHAPTER 2. THE DICTIONARY PROBLEMIn order to prove a lower bound for partial hashing schemes, we have to require theseschemes to use dense subuniverses, at least occasionally. The density of a set S � T inT equals jSj=jT j; S is said to be �-dense in T if S has a density of at least � in T . Let�� = (�1; �2; . . . ; �k) be a vector of values in the interval [0; 1], let e be a positive integer,and let H be a partial hashing scheme. A con�guration C of H is said to be ��-denseif the subuniverses S1(v) � S2(v) � � � � � Sk(v) corresponding to con�guration C haverespective densities � �1; �2; . . . ; �k in universes U1; U2; . . . ; Uk. A con�guration C of His said to be (��; e)-good if there is an extension sequence of at most e insertions in U1,starting from C, after which H is in a ��-dense con�guration; otherwise C is said to be(��; e)-bad. H is said to be (��; e)-good if H always uses (��; e)-good con�gurations. Ourlower bound applies to partial hashing schemes that are (��; e)-good.2.3.2 AdversaryIn this section, we describe a randomized adversary for proving a lower bound on theworst-case complexity of good partial hashing schemes.We de�ne an adversary Ar��;n;w;b against a partial hashing scheme H with a tower ofuniverses U1 � U2 � � � � � Uk and a working universe U = Uk that has been partitionedinto n equal-sized blocks; here �� = (�1; �2; . . . ; �k). The adversary is tailored against(��; e)-good partial hashing schemes with worst-case search cost r and worst-case updatecost w, but it is de�ned against any partial hashing scheme; we will de�ne e later.The adversary either performs a complete sequence of O(n) insertions on the initialdictionary leaving H in a ��-dense con�guration or performs a truncated sequence ofoperations which could not be completed because the hashing scheme has entered an(��; e)-bad con�guration.We need some de�nitions. Let p be a positive integer, let � 2 [0; 1], and let h be apartial hash function from a universe ~U to an array of locations. The domain of h isdenoted by dom(h). A random (�; p)-sample from h is a random subset R of dom(h)constructed as follows. First delete from dom(h) all the elements that go into locationswhere h sends less than an (�p)-fraction of ~U ; then pick a random p-subset S fromdom(h); for each location into which h sends k elements of S, pick a random subset withdensity �k in ~U that h sends into that location; R is the union of the subsets pickedfrom the various locations. A partial hash function is said to be (�;W )-narrow, for some
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2.3. MULTILEVEL HASHING MODEL 17� 2 [0; 1] and some positive integer W , if it sends at least an �-fraction of ~U into someset ofW locations; otherwise the hash function is said to be (�;W )-wide. A partial hashfunction is said to be �-biased, for some � 2 [0; 1], if it sends at most a �-fraction of ~Uinto any single location. We can prune a partial hash function and make it �-biased, forany given � 2 [0; 1], by deleting su�ciently many elements from its domain.We are ready to de�ne the adversary. The adversary �rst inserts a random n-subsetof U that is formed by picking a random element from each block of U (called the �rstbatch) and then performs a phase of insertions, called the tail phase. The tail phase isde�ned recursively on r:Basis. r = 1: If there exists an extension sequence �� consisting of at most e = n in-sertions in U1 taking H to a ��-dense con�guration, perform �� and announce completion;otherwise H is in a (��; e)-bad con�guration, so announce truncation.Induction Step. r � 2: We �rst perform a recursive subphase, called the narrowphase; if this phase gets truncated we perform another recursive subphase, called thewide phase. The adversary announces completion if one of the two phases completes;otherwise the adversary announces truncation. The two phases are performed as follows:Narrow Phase: Let W1 be a suitably de�ned positive integer. We construct a newhashing scheme H1 from H , having a tower of universes U1 � U2 � � � � � Uk = Uk+1, bycollapsing the top two levels of H into a single level. Each possible value stored at theroot location of H de�nes a partial hash function from Uk to the set of level-2 locationswhich equals the second probe function used by search operations when that value isstored at the root. We rank the level-2 locations of H according to each partial hashfunction h used by H at its root location as follows. The i-th location of a partial hashfunction h from a domain D � U to the set of level-2 locations is de�ned to be thelocation into which h sends the i-th largest subset of D; we resolve ties in favor of thelocation with the smallest index. The root location of H1, at any time, consists of theroot location of H juxtaposed with the �rst W1=2 level-2 locations of the current rootpartial hash function (this set of locations is denoted by L1); the advice location of H1consists of the advice location of H juxtaposed with the remaining level-2 locations ofH ; the i-th level of H1, for i � 2, coincides with the (i+ 1)-st level of H . The workingsubuniverse of H1, at any time, is the subset of the working subuniverse of H that theroot hash function of H maps into the set of locations L1; the tower of subuniverses of
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18 CHAPTER 2. THE DICTIONARY PROBLEMH1, at any time, consists of the tower of subuniverses of H followed by H1's workingsubuniverse. Operations are performed by H1 by simulating the behaviour of H . Thesearch cost of an operation on H1 is de�ned in the usual way. The refresh cost of anoperation on H1 is de�ned equal to the refresh cost of that operation on H . Notice thatthis de�nition of refresh cost is more liberal than the usual de�nition of the refresh costas the maximum number of locations at any level that get refreshed.The narrow phase of the adversary Ar��;n;w;b against H is recursively de�ned to be thetail phase of the adversary Ar�1��1;n;w;b against H1, starting from the same con�guration asH 's con�guration prior to the narrow phase; here ��1 = (�1; �2; . . . ; �k; �k=2). The nar-row phase completes if the recursive adversary announces completion; otherwise the nar-row phase is truncated. The narrow phase always forces H to use (�k=2;W1=2)-narrowroot hash functions; if the phase gets truncated then H will always use (�k=2;W1=2)-wide root hash functions in any ��-dense con�guration during the next e1 insertions inU1; we will specify e1 later.Wide Phase: The wide phase consists of two subphases: the �rst phase incrementallyconstructs a random subuniverse Uk+1 � U and alternately performs random insertionbatches in Uk+1 and extension batches in U1; the second phase recursively performsfurther random insertion batches in Uk+1 and extension batches in U1. The wide phasecompletes either if the second phase completes or if the second phase gets truncated butH is in an (��; e)-good con�guration following the phase (in the latter case, the widephase is completed by performing a suitable extension sequence in U1 that takes H to a��-dense con�guration); otherwise the wide phase is truncated. We can prune every roothash function used by H in a ��-dense con�guration during the wide phase by deletingfrom its domain a subset of density at most (�k=2) in U and make it (�k=W1)-biasedsince these hash functions are (�k=2;W1=2)-wide. Let � = �k , let W2 and e2 be suitablychosen positive integers, and let � = (�2=64W2m). The two subphases are performed asfollows:First Phase: We maintain a pair of sets U1 and U2 � U1 that are initially the emptysets and repeat the following step as many times as possible:Step: If there is an extension sequence �� of at most e2 insertions in U1 followingwhich H is in a ��-dense con�guration and H 's pruned root hash function has a domainD such that DnU1 is (�=4)-dense in U , then perform �� and continue the step; otherwise
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2.3. MULTILEVEL HASHING MODEL 19terminate the step. This ensures that, in any ��-dense con�guration of H during the nexte2 insertions in U1 following the �rst phase, the domain of H 's pruned root hash functionwill always intersect U1 in a (�=4)-dense subset of U . Let h be the pruned root hashfunction used by H following ��, and let D0 be a domain of density (�=4) in U that isdisjoint to U1 and on which h is de�ned. We insert D0 into U1, pick a random (�;W2=2)-sample U3 from hjD0 and insert it into U2, and, �nally, insert a random (�e2=8)-subsetS of U3 into the dictionary. The set S is constructed by uniformly partitioning U3 into(�e2=8) equal blocks in any way and picking a random element from each block. Thiscompletes the description of the step.Second Phase: Let Uk+1 = the value of set U2 at the end of the �rst phase, let L2= the set of level-2 locations from which the samples U3 were constructed during thesteps of the �rst phase, and let n0 = the total number of random elements inserted intothe dictionary during the �rst phase. The second phase is performed only if Uk+1 6= �;otherwise the second phase is truncated. We construct a new hashing scheme H2 havinga tower of universes U1 � U2 � � � � � Uk � Uk+1 by collapsing the top two levels of H ,by appending the set of locations L2 to the root location of H , and by appending theremaining level-2 locations to the advice location of H . The working subuniverse of H2,at any time, is the subset of Uk+1 that H 's pruned root hash function sends into thelocations of L2. Operations on H2 are performed by simulating H 's behaviour; the costsof operations on H2 are de�ned analogous to H1.The second phase is recursively de�ned as the tail phase of adversaryAr�1��2;n0;w;b againstH2; here ��2 = (�1; �2; . . . ; �k; �k=32).This essentially completes the de�nition of the tail phase and of the adversary.We now mention some details that had been omitted in the de�nition of the widephase. During the wide phase, often, the root hash function has to be restricted to asubdomain such as when pruning a root hash function or when choosing an appropriatesubdomain D0 of a pruned root hash function h during a step of the �rst phase. Theserestrictions are performed in a unique way. We prune every root hash function in aunique way depending only on the hash function and on the bias �. We choose domainD0 during a step of the �rst phase in a unique way depending only on the pruned hashfunction h and U1. In the construction of the random subsets S � U3 during the �rstphase, we uniformly partition U3 in a unique way depending only on its value.
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20 CHAPTER 2. THE DICTIONARY PROBLEMThe size of the universe reduces by a factor of 128m=�2 when carrying out therecursion during the wide phase. We need jU j � (32)r2(128m)rn=�2r to ensure that theuniverse has at least n elements by the time the adversary reaches the r-th level.The parameters e, e1, e2, W1, and W2 are de�ned as functions of the adversaryparameters r, �, and n using the following recurrence relations:er(�; n) = ( er�1(�=32; �er2(�; n)=8) if r � 2n otherwise (2.1)er1(�; n) = er�1(�=2; n) (2.2)er2(�; n) = �W r1 (�; n)=(c0w) (2.3)W r1 (�; n) = W r�1(�=2; n) (2.4)W r(�; n) = ( W r2 (�; n)�=(cr1b) if r � 2�n=c1b otherwise (2.5)W r2 (�; n) = W r�1(�=32; �er2(�; n)=8) (2.6)The constants c0 and c1 used in these recurrences will be speci�ed later. We obtain arecurrence involving W alone by eliminating the other parameters:W r(�; n) = 8<: W r�1(�=32;�2Wr�1(�=2;n)8c0w )�cr1b if r � 2�n=c1b otherwiseThis recurrence has the following solution:W r(�; n) = n �2r+1�3(64)(r�1)(5r�8)=2c2r+1�r�21 b2r�1(8c0w)2r�1�1 :Back-substituting this solution into the above recurrences, we �nd the values of param-eters e, e1, e2, W1, and W2 to be approximately n(�=wb)2r .The adversary de�nition requires all the parameters to be at least 1. We need n tobe su�ciently large (n � (wb=�)2r) to guarantee this.We state some useful facts about the adversary. These facts can be proved using thede�nition of the adversary and induction.Lemma 2.3 i. W r(�; n) � W r2 (�; n)=2 � W r1 (�; n)=2, for all r, �, and n.ii. (6=�)er2(�; n) � er1(�; n), for all r, �, and n.
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2.3. MULTILEVEL HASHING MODEL 21Lemma 2.4 i. The maximum number of insertions performed by Ar��;n;w;b is at most 3n.ii. The maximum number of random insertion batches performed by Ar��;n;w;b is at most(34)r�1=�.iii. The maximum number of insertions performed by Ar��;n;w;b during the second phaseis at most e2.iv. The maximum number of insertions performed by Ar��;n;w;b during the wide phase isat most (6=�)e2 � e1.Lemma 2.5 i. A complete adversary sequence leaves the hashing scheme in an ��-densecon�guration; a truncated adversary sequence leaves the hashing scheme in an (��; e)-badcon�guration.ii. Whenever the adversary performs a random insertion batch, the hashing scheme isin a ��-dense con�guration.iii. The hashing scheme always uses (�=2;W1=2)-wide root hash functions in a ��-densecon�guration during the wide phase of the adversary.2.3.3 Two Random Sampling LemmasThe analysis of the wide phase uses two technical lemmas for analyzing the behaviourof random samples under a sequence of partial hash functions, so, �rst, in this section,we state and prove these lemmas.We need some de�nitions before stating the lemmas. Consider partial hash functionsfrom a universe U to an array of m locations. An �-hash function, for any � 2 [0; 1],is a partial hash function that is de�ned on a domain of density � in U . A sequence ofpartial hash functions is called a hashtopy; we think of a hashtopy as a deformation ofa partial hash function over time, where time signi�es the integers from 1 to the lengthof the hashtopy. For a hashtopy H, Ht denotes the t-th partial hash function in thehashtopy. A hashtopy consisting of only �-hash functions is called an �-hashtopy; a�-biased hashtopy is de�ned analogously. Consider a hashtopy H. A location snap ofH is a pair (l; t), where 1 � l � m and 1 � t � jHj. A set S � U refreshes a locationsnap (l; t) of H if, for some element x 2 S, H sends x to location l at time t and H had
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22 CHAPTER 2. THE DICTIONARY PROBLEMsent x to a di�erent location the last time before t when x appeared in H. The refreshcost incurred by a set S � U in H is de�ned as the total number of locations snaps of Hrefreshed by S. The oscillation of an element x 2 U in H is de�ned as the refresh costincurred by x in H. The oscillation of H is de�ned as the mean oscillation of an elementof U in H. A �xed element of H is de�ned as an element whose oscillation in H equals0; a �xed subset of H is de�ned analogously.Our �rst lemma estimates the refresh cost incurred by a random sample in a �-biased hashtopy when the sample is constructed by uniformly partitioning the universeand sampling each partition independently.Lemma 2.6 (Refresh Cost Lemma) Consider a �-biased hashtopy H from a uni-verse U to an array of m locations. Let T = jHj, let n � 1=� be a positive integer, andlet �! = the oscillation of H. Partition U into n equal-sized blocks, and select a randomn-subset R from U by picking a random element from each block. R incurs a refresh costof at least �!=4� in H with probability at least (1� e�(n�!)=(16(T�1))).Our second lemma says that a random sample from a low oscillation �-hashtopyis likely to intersect the domains of the hash functions in the hashtopy in dense �xedsubsets.Lemma 2.7 (Density Lemma) Let H = (h1; h2; . . . ; hp+q) be a (1=p)-hashtopy froma universe U to an array of m locations in which the domains of h1; h2; . . . ; hp are alldisjoint. Suppose that the oscillation of H is at most (1=2p). Let k be a positive integer,let � � (1=4kmp2), and suppose that jU j � 1=�. Construct a random sample R of U bypicking a random (�; k)-sample from each of the hash functions h1; h2; . . . ; hp and takingthe union of these samples. Let F = the set of elements of U that are left �xed by H.With probability � (1� 2qe�k=192), F \ R \ dom(hi) is a (1=8p)-dense subset of R, forall i � p+ 1.We need some further lemmas for proving the above lemmas.Lemma 2.8 (Martingale Lemma) Let n be a positive integer and let 0 < � < � < 1.Let X1; X2; . . . ; Xn be a sequence of random variables in the range [0; 1] that are exposed
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2.3. MULTILEVEL HASHING MODEL 23one by one and satisfy the following relation:E[X1] +E[X2jX1] + E[X3jX1; X2] + � � �+E[XnjX1; X2; . . . ; Xn�1] � �n:Pr[X1 + X2 + � � � + Xn � �n] � (1 � e�c�;�n), where c�;� was de�ned in the BinarySampling Lemma.Proof. We generalize the proof of Hoe�ding's inequality [20] that gives the lemmawhen the random variables are mutually independent and have �xed means. We showthat E[eh(X1+X2+���+Xn)] � (1� �+ �eh)n; for all h � 0,and then complete the proof of the lemma as in Hoe�ding's inequality. We prove thisstatement by induction on n using Hoe�ding's ideas, namely the convexity of ex and theinequality between arithmetic and geometric means.Basis. n = 1: For any x in the range [0; 1], the convexity of ehx givesehx � 1� x+ xeh; so taking expectations, we getE[ehX1 ] � 1� E[X1] +E[X1]eh� 1� �+ �eh; since h � 0.Induction Step. n � 2: The idea is to expose X1 �rst and apply induction to thesequence X2; . . . ; Xn:E[eh(X1+���+Xn)] = EX1 [ehX1EX2;...;Xn [eh(X2+���+Xn)jX1]]� EX1 [ehX1(1� �n� E[X1]n � 1 (1� eh))n�1](by induction)� (1�E[X1](1� eh))(1� �n� E[X1]n� 1 (1� eh))n�1(by convexity of ehx)� (1� � + �eh)n(by the arithmetic and geometric means inequality).This completes the proof of the lemma.
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24 CHAPTER 2. THE DICTIONARY PROBLEMLemma 2.9 (Fractional Sampling Lemma) Let k1; k2; . . . ; kt be positive integers withsum k, let �1; �2; . . . ; �t be values in the interval [0; 1] with weighted mean � = (k1�1 +� � �+kt�t)=k, and let 0 < � < �. Consider a family of disjoint populations U1; U2; . . . ; Utof values in the interval [0; 1] with means �1; �2; . . . ; �t, respectively. Construct a ran-dom k-subset R by picking a random ki-subset from Ui, for each i, and taking the unionof these subsets. R has a mean greater than � with probability at least (1 � e�c�;�k),where c�;� was de�ned in the Binary Sampling Lemma.Proof. Suppose R is constructed by selecting a sequence of random values Y11; Y12; . . . ; Y1k1from U1, Y21; Y22; . . . ; Y2k2 from U2, and so on. De�ne a set of independent random vari-ables fXijj1 � j � kig as follows: Xij is simply a random value chosen from Ui. A resultof Hoe�ding [20] (Theorem 4) says thatEf(Xj Yij) � Ef(Xj Xij)for any convex function f and for all i. For all real numbers h, we have:EehPij Yij = Yi EehPj Yij(as fPj Yij ji = 1; . . . ; tg are mutually independent)� Yi EehPj Xij(by convexity of ehx and by Hoe�ding's result)= Yij EehXij(since Xij are mutually independent).We use this inequality and complete the proof of the lemma as in Hoe�ding's inequal-ity [20].We are ready to prove the main lemmas of this section.Proof of the Refresh Cost Lemma. The basic idea behind the proof is toconstruct the random sample R incrementally and use the Martingale Lemma. LetU1; U2; . . . ; Un denote the blocks of the partition of U . Construct R incrementally byrandomly selecting elements from the blocks, one by one. Denote the set of �rst i el-ements added to R by Ri. For each i 2 f1; 2; . . . ; ng, de�ne a random variable Xi =
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2.3. MULTILEVEL HASHING MODEL 25the refresh cost incurred by Ri in H minus the refresh cost incurred by Ri�1 in H. Therefresh cost incurred by R in H equals X1 +X2 + � � �+Xn.In order to apply the Martingale Lemma, we construct a sequence of random variablesfYiji = 1; . . . ; ng whose sum has the same distribution as the sum of the Xis for smallvalues of the sums: Yi = ( Xi if X1 + � � �+Xi � �!=2�T � 1 otherwise.Observe thatPi Yi =PiXi whenever PiXi � �!=2� and that Pi Yi �PiXi always. Itfollows that the probability that Pi Yi exceeds �!=4� equals the probability that PiXiexceeds �!=4�. We normalize the Yis to the interval [0; 1] and form new random variablesZi = Yi=(T � 1), for all i. The following lemma says that the Zis satisfy the conditionof the Martingale Lemma.Lemma 2.10E[Z1] +E[Z2jR1] + � � �+ E[ZnjR1; R2; . . . ; Rn�1] � �!n2(T � 1) :By the Martingale Lemma and using n � 1=�, we conclude that the probability thatPiZi exceeds �!=(4�(T � 1)) is at least (1� e�(n�!)=(16(T�1))). The Refresh Cost Lemmafollows immediately.It remains to prove Lemma 2.10.Proof of Lemma 2.10. We need some de�nitions. For any set S � U and elementx 2 U , the oscillation of x modulo S is de�ned as the refresh cost incurred by S [ fxgminus the refresh cost incurred by S. For any pair of sets S; T � U , the oscillation of Tmodulo S, denoted �!S(T ), is de�ned as the mean oscillation of an element of T moduloS. Consider the construction of the sample R by adding elements from the blocks, oneby one. De�ne:�!i = (�!Ri�1(Ui) + �!Ri�1(Ui+1) + � � �+ �!Ri�1(Un))=n; and� = maxftjX1 +X2 + � � �+Xt � �!=2�g:We have�!�+1 � (n� �)(T � 1)=n = (E[Z�+1jR�] +E[Z�+2jR�+1] + � � �+E[ZnjRn�1])(T � 1)=n:
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26 CHAPTER 2. THE DICTIONARY PROBLEMFor any i � �, we have�!i � �!i+1 � �!Ri�1(Ui)=n+ �!Ri�1(U)� �!Ri(U)� E[ZijRi�1](T � 1)=n+ �Xi(as each newly refreshed location snap at step i reducesthe oscillation of at most a �-fraction of U).Summing i from 1 to �, we get�! = (�!1 � �!2) + (�!2 � �!3) + � � �+ (�!� � �!�+1) + �!�+1� (E[Z1] + E[Z2jR1] + � � �+ E[ZnjRn�1])(T � 1)=n+ �(X1 +X2 + � � �+X�)� (E[Z1] + E[Z2jR1] + � � �+ E[ZnjRn�1])(T � 1)=n+ �!=2:The lemma follows from this inequality.This completes the proof of the Refresh Cost Lemma.Proof of the Density Lemma. Since the oscillation ofH is at most 1=2p, it followsthat jF j � (1� 1=2p)jU j. Thus F \dom(hj) has a density of at least 1=2p in U , for all j.We complete the proof of the lemma by showing that the intersection of R with any �xed(1=2p)-dense subset of U is a (1=8p)-dense subset of R with probability � (1�2e�k=192).Let S be any (1=2p)-dense subset of U . We want to estimate the probability thatR \ S is a (1=8p)-dense subset of R. Let D denote the set of elements that are deletedfrom the domains of hash functions h1; . . . ; hp when R is constructed by taking (�; k)-samples of these hash functions. Since � � (1=4kmp2), it follows that jDj � jU j=4p.De�ne S1 = SnD; S1 is a (1=4p)-dense subset of U . We show that S1 \R is likely to be(1=8p)-dense in R using two successive applications of the Fractional Sampling Lemma.Let us review the construction of R. R is constructed by picking a random k-subsetfrom each of the sets Ui = dom(hi)nD, for i � p, by forming the union R1 of thesesubsets, by picking dense subsets of U that go into the same locations as the elementsof R1, and by forming the union of these dense subsets.For each element x 2 dom(hi), de�nevalue(x) = jh�1i (hi(x))\ S1jjh�1i (hi(x))j :We have Ex2Uivalue(x) � Ex2dom(hi)value(x); and
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2.3. MULTILEVEL HASHING MODEL 27PiEx2Uivalue(x)p � Ex2Uvalue(x) � 1=4p:By the Fractional Sampling Lemma, it follows that R1 has a mean value of at least 1=6pwith probability � (1� e�k=72).We estimate the probability that R \ S1 is (1=8p)-dense in R, given that R1 has amean value of at least 1=6p. For all i 2 f1; 2; . . . ; pg and all l 2 f1; 2; . . . ; mg, de�neUi;l = h�1i l andki;l = jR1 \ Ui;lj:De�ne the characteristic function �S1 of set S1:�S1(x) = ( 1 if x 2 S10 otherwiseSince the mean value of R1 is at least 1=6p, it follows thatPi;l ki;lEx2Ui;l�S1(x)kp � 1=6p:Since R is formed by picking a random (ki;l�jU j)-subset of Ui;l and taking the union ofthese subsets, by the Fractional Sampling Lemma, it follows that R\S1 is a (1=8p)-densesubset of R with conditional probability � (1�e�k=192), given that R1 has a mean value� 1=6p.We conclude that R \ S1 is a (1=8p)-dense subset of R with probability � (1 �2e�k=192). This completes the proof of the lemma.2.3.4 The Worst-case Lower BoundIn this section, we analyze the adversary de�ned in Section 2.3.2 and prove a lower boundof 
(log(logn= log b)) on the worst-case cost of dictionary operations in the refresh costmultilevel hashing model, where n = the maximum dictionary size during the operationsequences.Let H be any partial hashing scheme. We say that H succeeds on a sequence ofoperations � performed by adversary Ar��;n;w;b if � is a complete sequence of operations,the maximum cost of an update operation in � is at most w, and the maximum level ofa dictionary element during � is at most r.
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28 CHAPTER 2. THE DICTIONARY PROBLEMThe following lemma bounds the success probability of a partial hashing schemeagainst the adversary.Lemma 2.11 Let �� = (�1; �2; . . . ; �k) be a sequence of values in the interval [0; 1], let� = �k, and let W = W r(�; n) � 1. Let H be a partial hashing scheme that has a(Wb)-bit root location and b-bit locations at levels � 2. H succeeds against Ar��;n;w;b withprobability � e�Wb.The lemma gives a trade-o� between the worst-case costs of search operations andupdate operations incurred by a hashing scheme. Let H be a multilevel hashing schemein the refresh cost model with wordsize b that incurs a worst-case cost of r on searchesand a worst-case cost of w on updates in processing sequences of O(n) operations. Hhas the following trade-o� between r, w, and b:w = 
(n1=2r=b):This trade-o� gives a lower bound of 
(log(logn= log b)) for maxfr; wg.The rest of this section is devoted to proving Lemma 2.11. The proof is by inductionon r. Let U1 � U2 � � � � � Uk = U be the tower of universes of H .Basis. r = 1: Following a successful adversary sequence, the working subuniverseof H has density � � in U . Let S(v) be a �xed �-dense working subuniverse usedby H following a successful adversary sequence. By the Fractional Sampling Lemma,the random �rst batch has � �n=4 elements in S(v) with probability � (1� e��n=16).The root location can store at most Wb = �n=c1 distinct elements of U , so if c1 > 4,some element of the �rst batch is stored at a level � 2 with this probability. Since theroot location can store at most 2�n=c1 distinct values v, the success probability of H is� 2�n=c1e��n=16. We choose c1 � 32 so that the success probability of H is � e��n=c1 .Induction Step. r � 2: We estimate the probability that H succeeds against theadversary: Pr[success] = Pr[narrow phase completes successfully] +Pr[wide phase completes successfully]If the narrow phase completes successfully then the induced hashing scheme H1succeeds against its adversary Ar�1��1;n;w;b. Thus, by induction, the �rst term is boundedby e�W1b.
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2.3. MULTILEVEL HASHING MODEL 29We bound the second term by showing that any �xed sequence of root hash functionsH = (h1; h2; . . . ; hl) used before the random insertion batches during the wide phase hasa low probability of success; actually, here hl denotes the root hash function used atthe end of the adversary sequence and hl�1 denotes the root hash function used beforethe last random insertion batch. The hash functions hi are all (�=2;W1=2)-wide, sothey can be pruned to obtain (�=W1)-biased hash functions gi by deleting subsets ofdensity � �=2 in U from their domains. The gis are (�=2)-hash functions. We applythe incremental construction of the random subuniverse Uk+1 during the �rst phase tothe sequence (g1; g2; . . . ; gl) and determine the pre�x (g1; g2; . . . ; gp) of the sequence fromwhich Uk+1 is constructed through random sampling. When sampling from a prunedhash function gi, we restrict gi to a subdomain D0 of density �=4 in U and sample fromthe restriction fi = gijD0 . The domains of the restrictions fi, for 1 � i � p, are all disjointand the union of these domains equals U1. The domains of the hash functions gj , forj � p+1, intersect U1 in a (�=4)-dense subset of U , since, otherwise, the construction ofUk+1 would have also involved gj . We restrict each hash function gj , for j � p+1, to thesubdomain dom(gj) \ U1 and obtain a (�=4)-hash function fj . Consider the hashtopyF = (f1; f2; . . . ; fl) over universe U1. Two cases arise:Case 1. The oscillation of F is at least �=8: By the Refresh Cost Lemma, since Fis a (�=W1)-biased hashtopy, the �rst batch of the adversary incurs a refresh cost of atleast W1=32 in F with probability at least (1� e�(n�=128l)). We choose c0 > 192 so thatthe total refresh cost available during the wide phase is at most 6e2w=� < W1=32. Theprobability of success of H is � e�(n�=128l).Case 2. The oscillation of F is at most �=8: Uk+1 is formed by picking (4�=�p;W2=2)-samples from the hash functions fi, for i � p, and taking the union of these samples;here we have scaled � to convert densities from U to U1. F is a (1=p)-hashtopy overU1, the oscillation of F is at most 1=2p, and (4�=�p) � (1=4kmp2). Let F = the setof elements of U1 that are left �xed by F . By the Density Lemma, with probability� (1 � 2le�W2=384), F \ Uk+1 \ dom(hi) is (�=32)-dense in Uk+1, for all i � p + 1. Wecall this property of Uk+1 as the density property.Fix a sequence of insertions � performed by the adversary prior to the wide phaseand �x a subuniverse Uk+1 chosen by the adversary with the density property. Underthese conditions, if H succeeds against the adversary, then the induced hashing scheme
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30 CHAPTER 2. THE DICTIONARY PROBLEMH2 succeeds against its adversary Ar�1��2;n0;w;b; the second phase can not get truncatedbecause Uk+1 has a dense �xed intersection with dom(hl). By induction, under theabove conditions, H succeeds against the adversary using H with probability � e�W2b.In both cases, the probability that H succeeds using root hashtopy H is at mostmaxfe�(�n=128l); (2l+ 1)e�W2=384g � e�W2=500;for su�ciently large c1. The total number of root hashtopies H available is at most2Wb(34)r�1=�. If we let W � (W2�=1000(34)r�1b) (by making c1 large enough), then theprobability that H successfully completes the wide phase is at most e�W2=1000.The probability thatH succeeds against the adversary is at most e�W1b+e�W2=1000 �e�Wb, since W is small relative to W1 and W2. This completes the proof of the lemma.2.3.5 AmortizationIn this section, we prove a lower bound of 
(log(logn= log b)) on the amortized costof dictionary operations in the refresh cost multilevel hashing model, where n = themaximum dictionary size during the operation sequences.Any hashing scheme H with an amortized cost of r on searches and an amortizedcost of w on updates can be converted into a hashing scheme H 0 with a worst-case costof r on searches and an amortized cost of w on updates. H 0 simulates the behaviour of Hin processing all the operations, but always stores the dictionary elements in the �rst rlevels. A search operation is performed by H 0 by simulating H , but H 0 does not changethe memory con�guration even if H does. An update operation is performed by H 0 bysimulating H and then compressing the dictionary to the �rst r levels by performingsu�ciently many greedy searches that each have a search cost � r + 1. Consider asequence � of u update operations performed on H 0. � translates into a sequence �� ofu update operations and g greedy searches on H . Let wi = the refresh cost of the i-thoperation in ��. The cost of �� on H is at least Pi wi + g(r+ 1) and at most gr+ uw, soit follows that Pi wi � uw. We conclude that H 0 incurs a worst-case cost of r on searchoperations and an amortized cost of w on update operations.We complete the proof of Theorem 2.1 by showing that a hashing scheme incurseither a worst-case cost of r on searches or an amortized cost of 
(n1=2r=22rb) on updatesin processing operation sequences of length O(n). We modify the worst-case adversary
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2.3. MULTILEVEL HASHING MODEL 31Ar��;n;w;b by appropriately performing greedy insertion batches following random insertionbatches. A con�guration C of a partial hashing scheme H is said to be w-amortized,for a positive integer w, if the cost incurred by H in processing any sequence � ofupdate operations, starting from con�guration C, is at most j�jw. The new adversary�Ar��;n;w;b is tailored against (��; e)-good partial hashing schemes that start processing theadversary sequence in a w-amortized con�guration; here e is a suitably de�ned positiveinteger. Either the adversary performs a complete sequence of O(n) insertions, or itgets truncated because the scheme has entered a (��; e)-bad con�guration or because thescheme was not in a w-amortized con�guration, initially.We de�ne adversary �Ar��;n;w;b against a partial hashing scheme H ; let � denote thelast component of ��. A w-greedy insertion batch performed against a hashing scheme Hin a con�guration C is de�ned to be a maximal sequence � of insertions, starting fromcon�guration C, during which H incurs an update cost of at least wj�j. The adversaryperforms a random �rst batch just like the worst-case adversary, then performs a (2w)-greedy insertion batch, and, �nally, performs the tail phase; the adversary announcestruncation even before performing the �rst batch if the initial con�guration of H is notw-amortized. The tail phase is de�ned recursively, essentially as before, and consistsof a narrow phase, possibly, followed by a wide phase; in the case r = 1, as before,the tail phase is a suitable extension batch that takes H to an ��-dense con�guration.The narrow phase consists of the tail phase of the recursive adversary �Ar�1��1;n;w;b performedagainst the induced hashing scheme H1 that is constructed as before. If the narrow phasegets truncated, then H1 has entered an (��; e1)-bad, (22r�2w)-amortized con�guration.Equivalently, H has entered a (22r�2w)-amortized con�guration such that H uses only(�k=2;W1=2)-wide root hash functions in any ��-dense con�guration during the next e1insertions. The wide phase consists of a �rst phase followed by a second phase thatare de�ned slightly di�erently from the worst-case adversary. During the �rst phase,following each batch of random insertions, we perform a (22r�2+1w)-greedy insertionbatch so that, at the end of the �rst phase, H is in a (22r�2+1w)-amortized con�guration.The second phase is recursively de�ned to be the tail phase of adversary �Ar�1��2;n0 ;22r�2w;bperformed against the induced hashing scheme H2 that is constructed as before. Thiscompletes the de�nition of �Ar��;n;w;b.We de�ne parameters e, e1, e2, W , W1, and W2 as functions of r, �, n, and w. Only
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32 CHAPTER 2. THE DICTIONARY PROBLEMthe de�nition of er2(�; n; w) has to be modi�ed since it depends on w:er2(�; n; w) = �W r1 (�; n; w)=(c022r�2w) (2:7)The recurrence for W becomes:W r(�; n; w) = 8><>: W r�1(�=32;�2Wr�1(�=2;n;w)8c022r�2w ;22r�2w)�cr1b if r � 2�n=c1b otherwiseThis recurrence has the following solution:W r(�; n; w) = n �2r+1�3(64)(r�1)(5r�8)=2c2r+1�r�21 222r�3�2r�2b2r�1(8c0w)2r�1�1 :Hence the values of the parameters is approximately n(�=22rwb)2r .The Lemmas 2.3, 2.4, and 2.5 still hold for �Ar��;n;w;b with the exception of Lemma 2.4,Parts i. and iv. We modify some parts of the lemmas as follows:Lemma 2.3 ii'. (10=�)er2(�; n; w) � er1(�; n; w), for all r, �, n, and w.Lemma 2.4 i'. The maximum number of insertions performed by �Ar��;n;w;b is at most 4n.iv'. The maximum number of insertions performed by �Ar��;n;w;b during the wide phase isat most (10=�)e2 � e1.Lemma 2.5 i'. A complete adversary sequence leaves the hashing scheme in an ��-densecon�guration; a truncated adversary sequence leaves the hashing scheme in a (22r�1w)-amortized (��; e)-bad con�guration.Lemma 2.11 still holds for �Ar��;n;w;b:Lemma 2.12 Let �� = (�1; �2; . . . ; �k) be a sequence of values in the interval [0; 1], let� = �k, and let W = W r(�; n; w) � 1. Let H be a partial hashing scheme that has a(Wb)-bit root location and b-bit locations at levels � 2. H succeeds against �Ar��;n;w;b withprobability � e�Wb.This lemma gives a trade-o� between the worst-case cost of searches, r, and theamortized cost of updates, w, incurred by a multilevel hashing scheme in the refresh cost
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2.3. MULTILEVEL HASHING MODEL 33model in processing sequences of O(n) operations:w = 
(n1=2r=22rb):The lower bound of Theorem 2.1 follows from this trade-o� and our procedure for convert-ing an amortized hashing scheme into a hashing scheme with a worst-case cost guaranteefor search operations.Lemma 2.12 is proved in the same way as Lemma 2.11. The only part of the proofthat changes due to amortization is Case 1 of the induction step. In this case the totalrefresh cost available during the wide phase is at most 10e222r�2w=�. We choose c0 > 320so that this quantity is less than W1=32, which is the probable refresh cost incurred bythe �rst batch. The rest of the proof remains as before.
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34 CHAPTER 2. THE DICTIONARY PROBLEM
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Chapter 3The Deque ConjectureSplay is an algorithm for searching binary search trees, devised by Sleator and Tarjan,that reorganizes the tree by means of rotations. Sleator and Tarjan conjectured thatSplay is, in essence, the fastest algorithm for processing any sequence of search operationson a binary search tree, using only rotations to reorganize the tree. Tarjan proved aspecial case of this conjecture, called the Scanning Theorem, and conjectured a moregeneral special case, called the Deque Conjecture.In this chapter, we prove tight bounds for some combinatorial problems involvingrotation sequences on binary trees, derive a result that is a close approximation to theDeque Conjecture, and give two new proofs of the Scanning Theorem1.3.1 IntroductionWe review the Splay Algorithm, its conjectures and previous works on them, and describeour results.3.1.1 The Splay Algorithm and Its ConjecturesSplay is a simple, e�cient algorithm for searching binary search trees, devised by Sleatorand Tarjan [28]. A splay at an element x of a binary search tree �rst locates the elementin the tree by traversing the path from the root of the tree to the element (called theaccess path of the element) and then transforms the tree by means of rotations in order1The work of this chapter was reported in [30].35
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36 CHAPTER 3. THE DEQUE CONJECTUREto speed up future searches in the vicinity of the element. The splay transformationmoves element x to the root of the tree along its access path by repeating the followingstep (See Figure 3.1):Splay step.Let p and g denote, respectively, the parent and the grandparent of x.Case 1. p is the root: Make x the new root, by rotating the edge [x; p].Case 2. [x; p] is a left edge (i:e: an edge to a left child) and [p; g] is a rightedge, or vice versa: Rotate [x; p]; Rotate [x; g].Case 3. Either both [x; p] and [p; g] are left edges, or both are right edges:Rotate [p; g]; Rotate [x; p].Sleator and Tarjan proved that Splay is, upto a constant factor, as e�cient as themore complex traditional balanced tree algorithms for processing any sequence of binarysearch tree operations. They also showed that Splay actually behaves even faster oncertain special kinds of sequences and conjectured that Splay is, upto a constant factor,the fastest rotation-based binary search tree algorithm for processing any sequence ofsearches on a binary search tree. We state this conjecture and some closely-relatedconjectures:Conjecture 3.1 (Dynamic Optimality Conjecture [28]) Let s denote an arbitrarysequence of searches of elements in a given n-node binary search tree. De�ne �(s) equalto the minimum cost of executing sequence s on the tree using an algorithm that performssearches, incurring a cost equal to (1+the distance of the element from the root) on eachsearch, and transforms the tree by means of single rotations, incurring unit cost per singlerotation. Splay takes O(n+ �(s)) time to process s.Conjecture 3.2 (Deque Conjecture [33]) Deque operations on a binary tree trans-form the tree by inserting or deleting nodes at the left or right end of the tree. Weperform deque operations on a binary tree using Splay as follows (See Figure 3.2): Popsplays at the leftmost node and removes it from the tree; Push inserts a new node to theleft, making the old tree its right subtree; Eject and Inject are symmetric operationsperformed at the right end. Splay takes O(m+n) time to process a sequence of m dequeoperations on an n-node binary tree.
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3.1. INTRODUCTION 37
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Figure 3.1: A splay step.
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38 CHAPTER 3. THE DEQUE CONJECTUREConjecture 3.3 (Right Turn Conjecture [33]) De�ne a right 2-turn on a binarytree to be a sequence of two right single rotations performed on the tree in which thebottom node of the �rst rotation coincides with the top node of the second rotation (SeeFigure 3.3). In a sequence of right 2-turns and right single rotations performed on ann-node binary tree, there are only O(n) right 2-turns.
Inject(6)Pop21 3 4 5 2 3 45

2 3 45 6
Figure 3.2: The deque operations.The conjectures are related as follows. A stronger form of the Dynamic OptimalityConjecture that allows update operations as well as search operations implies the DequeConjecture. The Right Turn Conjecture also implies the Deque Conjecture.
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3.1. INTRODUCTION 393.1.2 TerminologyWe de�ne the basic terminology used in the chapter. A binary search tree over anordered universe is a binary tree whose nodes are assigned elements from the universein symmetric order: that is, for any node x assigned an element e, the elements in theleft subtree of x are lesser than e and the elements in the right subtree of x are greaterthan e. The path between the root and the leftmost node in a binary tree is called theleft path. A tree in which the left path is the entire tree is called a left path tree. Theedge between a node and its left child in a binary tree is called a left edge. The pathsin a binary tree that comprise only left edges are called left subpaths. The left depth ofa node in a binary tree is de�ned to be the number of left edges on the path between thenode and the root. The terms right path tree, right path, right edge, right subpath, andright depth are de�ned analogously. A single rotation of an edge [x; p] in a binary treeis a transformation that makes x the parent of p by transferring one of the subtrees ofx to p (See Figure 3.3). A single rotation is called right or left, respectively, accordingto whether [x; p] was originally a left edge or a right edge. A rotation on a binary treeis a sequence of single rotations performed on the tree. A rotation is called left or right,respectively, if it consists solely of left single rotations or solely of right single rotations.A double rotation on a binary tree is a sequence of two single rotations performed on thetree that have a node in common (as, for instance, by a splay step). A left path rotationon a binary tree is a right single rotation performed on the left path of the tree. A rightpath rotation is de�ned analogously.We de�ne the Ackerman hierarchy of functions fAiji � 0g, its inverse hierarchyf�̂iji � 0g, and inverse functions �� and � of the Ackerman function as follows:A0(j) = 2j for all j � 1A1(j) = 2j for all j � 1Ai(j) = ( Ai�1(2) if i � 2 and j = 1Ai�1(Ai(j � 1)) if i � 2 and j � 2�̂i(n) = minfk � 1jAi(k) � ng for all n � 1��(n) = minfk � 1jAk(1) � ng for all n � 1�(m;n) = minfk � 1jAk( m=n ) > logng for all m � n � 1
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40 CHAPTER 3. THE DEQUE CONJECTUREi. A single rotation

iv. A right 3-cascadeiii. A right 3-turn
ii. A right 3-twist CBACBA pxpx

Figure 3.3: The various types of rotations.
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3.1. INTRODUCTION 41The following table concretizes this de�nition:i 0 1 2 3 4Ai(j) 2j 2j 22���2 	 j�̂i(n) n=2 log n � log� n � log��n � log��� nfnj��(n) = ig [1; 2] [3; 4] [5; 16] [17; 22���2 	 16]3.1.3 Previous WorksPrevious works on the Dynamic Optimality Conjecture have been mostly directed to-wards resolving its corollaries. Tarjan [33] proved that Splay requires linear time tosequentially scan the nodes of an n-node binary tree in symmetric order. This theorem,called the Scanning Theorem, is a corollary of all of the above conjectures. He also ex-tended his proof to a proof of the Deque Conjecture when all the output operations areperformed at one end of the tree. Lucas [22] obtained an O(n��(n)) upper bound for theDeque Conjecture when all the operations are output operations and the initial tree is asimple path between the leftmost and rightmost nodes. Building upon the work of Coleet al. [11], Cole [9,10] recently proved Sleator and Tarjan's Dynamic Finger Conjecture[28] for the Splay Algorithm which is a corollary of the Dynamic Optimality Conjecture.Wilber [36] gave two elegant techniques for lower-bounding �(s). The techniques yieldoptimal lower bounds for some special sequences (such as �(s) = 
(n logn) for the bit-reversal permutation), but it is not clear how tight these lower bounds are for generalsequences.A related combinatorial question that has been studied is, how many single rotationsare needed, in the worst case, to transform one n-node binary tree into another n-nodebinary tree? Culik and Wood [12] noted that 2n� 2 rotations su�ce and, later, Sleatoret al. [29] derived the optimal bound of 2n� 6 rotations for all su�ciently large n.3.1.4 Our ResultsOur work is directed towards resolving the Deque Conjecture. A good understanding ofthe powers of various types of rotations on binary trees would equip us with the necessarytools to tackle the conjecture. We prove almost tight upper and lower bounds on themaximum numbers of occurrences of various types of right rotations in a sequence of
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42 CHAPTER 3. THE DEQUE CONJECTUREright rotations performed on a binary tree. We study the following types of rotations(See Figure 3.3):Right twist: For all k � 1, a right k-twist is a sequence of k right single rotationsperformed along a left subpath of a binary tree, traversing the subpath top-down.Right turn: For all k � 1, a right k-turn is a right k-twist that converts a left subpathof k edges in a binary tree into a right subpath.Right cascade: For all k � 1, a right k-cascade is a right k-twist that rotates everyother edge lying on a left subpath of 2k � 1 edges in a binary tree.A right twist sequence is a sequence of right twists performed on a binary tree. De�neTwk(n), Tuk(n) and Ck(n), respectively, to be the maximum numbers of occurrencesof k-twists, k-turns and k-cascades in a right twist sequence performed on an n-nodebinary tree. These numbers are well de�ned since a tree is transformed into a right pathafter  n2! right single rotations. We derive the following bounds for Twk(n), Tuk(n)and Ck(n): Upper bound Lower boundTwk(n) O(kn1+1=k) 
(n1+1=k)� O(n)Tuk(n)Ck(n) ( O(n�̂ k=2 (n)) if k 6= 3O(n log logn) if k = 3 ( 
(n�̂ k=2 (n))� O(n) if k 6= 3
(n log logn) if k = 3The bounds for Tuk(n) and Ck(n) are tight if k � 2��(n)� 5 and the bounds for Twk(n)are nearly tight. The Right Turn Conjecture is refuted by the lower bound of 
(n logn)for Tu2(n)2. We apply the upper bound for cascades to derive an O((m+ n)��(m+ n))upper bound for the Deque Conjecture.Another approach to the Deque Conjecture is to �nd new proofs of the ScanningTheorem that might naturally extend to the Deque Conjecture setting. We obtain asimple potential-based proof that solves Tarjan's problem [33] of �nding a potential-based proof of the theorem, and an inductive proof that generalizes the theorem. Thenew proofs enhance our understanding of the Scanning Theorem, but, so far, have notled to a proof of the Deque Conjecture.2S.R.Kosaraju has independently proved that Tu2(n) = �(n log n). While his upper bound proofdi�ers from ours, the lower bound constructions match.



www.manaraa.com

3.2. COUNTING TWISTS, TURNS, AND CASCADES 43The chapter is organized as follows. In Section 3.2, we prove the bounds for Twk(n),Tuk(n) and Ck(n). In Section 3.3, we derive the upper bound for the Deque Conjecture.In Section 3.4, we describe the new proofs of the Scanning Theorem.3.2 Counting Twists, Turns, and CascadesThe two subsections of this section derive the upper and lower bounds for Twk(n),Tuk(n) and Ck(n).3.2.1 Upper BoundsAll our upper bound proofs are based on a recursive divide-and-conquer strategy thatpartitions the binary tree on which the right twist sequence is performed into a collectionof vertex-disjoint subtrees, called block trees. The root and some other nodes within eachblock are labeled global and the global nodes of all of the block trees induce a new treecalled the global tree. Each rotation on the original tree e�ects a similar rotation eitheron one of the block trees or on the global tree. This allows us to inductively count thenumber of rotations of each type in the sequence.We need the notion of blocks in binary trees [33]. Consider an n-node binary treeB whose nodes are labeled from 1 to n in symmetric order. A block of B is an interval[i; j]� [1; n] of nodes in B. Any block [i; j] of B induces a binary tree Bj[i;j], called theblock tree of block [i; j], which comprises exactly the nodes i to j. The root of Bj[i;j] isthe lowest common ancestor of nodes i and j in B. The left child of a node x in Bj[i;j]is the highest node in the left subtree of x in B which lies in block [i; j]. The right childof a node in Bj[i;j] is de�ned analogously. Notice that, for the subtree rooted at anynode of B, the highest node of the subtree which lies in block [i; j] is unique wheneverit exists: if two equally highest nodes exist, then their lowest common ancestor in thesubtree would be higher than the two nodes, resulting in a contradiction. How does arotation on B a�ect a block tree Bj[i;j]? If both of the nodes involved in the rotation arein Bj[i;j], then the rotation translates into a rotation on Bj[i;j] involving the same pairof nodes. Otherwise, Bj[i;j] is not a�ected.The functions Twk, Tuk and Ck are superadditive:
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44 CHAPTER 3. THE DEQUE CONJECTURELemma 3.1 For all k � 1 and m � n � 1, we have:a. m=n Twk(n) � Twk(m),b. m=n Tuk(n) � Tuk(m), andc. m=n Ck(n) � Ck(m):Proof. We prove Part a.; Parts b. and c. are similar. Given a right twist sequenceS for an n-node binary tree B that comprises Twk(n) right k-twists, construct a newtree of size m=n n � m by starting with a copy of B and successively inserting a newcopy of B as the right subtree of the rightmost node in the current tree m=n �1 times.Since S can be performed on each of the copies of B one after another, there exists aright twist sequence with m=n Twk(n) k-turns for a tree of size m. Part a. followsimmediately.The upper bound for twists is the simplest to derive. De�ne Li(j) =  i+ j � 1i ! forall i � 1 and j � 1. The upper bound for Twk(n) for n of the form Lk(j) is given by:Lemma 3.2 Twk(Lk(j)) � k k + j � 1k + 1 ! for all k � 1 and j � 1.Proof. We use double induction on k and j.Case 1. k = 1 or j = 1: Straightforward.Case 2. k � 2 and j � 2: The tree is partitioned into a left block of Lk�1(j) nodesand a right block of Lk(j � 1) nodes. A right twist sequence on the tree translates intocorresponding right twist sequences on the left and right block trees. We classify thek-twists in the original sequence into three categories and count the number of k-twistsof each type separately. In the �rst type of k-twist, the lowest k � 1 single rotationsinvolve only left block nodes. Such a k-twist translates into a (k � 1)-twist on the leftblock tree. Applying induction to the induced right twist sequence performed on the leftblock tree, we see that there are at most (k � 1) k + j � 2k ! k-twists of the �rst typein the original right twist sequence. Similarly, the number of k-twists that involve onlyright block nodes is at most k k + j � 2k + 1 !. Consider a k-twist that does not belong tothese two categories. The highest single rotation of such a twist must involve only right
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3.2. COUNTING TWISTS, TURNS, AND CASCADES 45block nodes; also, the lowest node involved in the twist must be a left block node. Thisimplies that the highest node of the twist is a right block node that leaves the left pathof its block as a result of the twist. Right rotations never add nodes to a block's leftpath, so the number of k-twists in the last category is at most the initial size of the leftpath of the right block � Lk(j � 1) =  k + j � 2k !. It follows that the total number ofright k-twists in the right twist sequence is bounded by(k � 1) k + j � 2k !+ k k + j � 2k + 1 !+  k + j � 2k != k k + j � 2k !+ k k + j � 2k + 1 != k k + j � 1k + 1 !:A simple calculation using the above lemma and Lemma 3.1a gives the upper boundfor Twk(n) for all n:Theorem 3.1 Twk(n) � kn1+1=k for all k � 1 and n � 1.Proof. Fix k and de�ne j = minfijn �  k + ik !g. Then we haveTk(n) � Tk( k + jk !)=  k + jk !=n (By Lemma 3.1a)� 2k k + jk + 1!n= k + jk ! (By Lemma 3.2)� kn1+1=k:We derive the upper bounds for turns and cascades. It is easy to see that Tu1(n) =C1(n) =  n2! � n�̂0(n). Let us prove that Tu2(n) = O(n�̂1(n)). Consider any righttwist sequence performed on a binary tree B. We divide B into a left block [1; n=2 ]and a right block [ n=2 + 1; n]. Every 2-turn either involves nodes from only one block(intrablock) or involves nodes from both blocks (interblock). An intrablock 2-turn e�ectsa 2-turn in the corresponding block tree and gets counted in the right twist sequence for
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46 CHAPTER 3. THE DEQUE CONJECTUREthe block tree. Every interblock 2-turn either adds a node to the right path of the leftblock tree or deletes a node from the left path of the right block tree (See Figure 3.4).Right rotations never remove nodes from a block's right path or add nodes to a block'sleft path, so the number of interblock 2-turns is at most n�2. This leads to the followingrecurrence for Tu2(n):Tu2(n) � ( Tu2( n=2 ) + Tu2( n=2 ) + n � 2 if n � 30 if 1 � n � 2Solving the recurrence yields the desired bound for Tu2(n):Tu2(n) � n logn � 2 logn � n+ 2 � n�̂1(n):With a slight modi�cation the same proof works for 2-cascades also. An interblock2-cascade either decreases the size of the left path of the right block tree or increasesthe number of left block nodes whose left depth relative to the block is at most 1 (SeeFigure 3.5). Right rotations never increase the left depth of a node, so the number ofinterblock 2-cascades is at most n� 3. The bound C2(n) � n�̂1(n) follows.* * * * *
* * * * *Figure 3.4: The two types of interblock right 2-turns. Circles denote left block nodes andsquares denote right block nodes. The stars identify the nodes that lie on the left/rightpath of a block.
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3.2. COUNTING TWISTS, TURNS, AND CASCADES 47

##
####
## ### * *** *

* * * *******
** * **

Figure 3.5: The three types of interblock right 2-cascades. The sharps identify the leftblock nodes that have a left depth of at most 1; the stars identify the right block nodeslying on the left path of their block.
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48 CHAPTER 3. THE DEQUE CONJECTUREIn order to extend the above argument to k-turns and k-cascades for k � 3, we needan Ackerman-like hierarchy of functions fKiji � 1g:K1(j) = 8j for all j � 1K2(j) = 24j for all j � 1Ki(j) = ( iKi�2( i=2 ) if i � 3 and j = 1Ki(j � 1)Ki�2(Ki(j � 1)=4)=2 if i � 3 and j � 2The function Ki grows faster than the Ackerman function A i=2 :Lemma 3.3 1. A(2)1 (j) � K3(j) for all j � 1.2. A i=2 (j) � Ki(j) for all i 6= 3 and j � 1.The upper bound for Tuk(n) for n of the form Kk(j) is given by:Lemma 3.4 Tuk(Kk(j)) � 4jKk(j), for all k � 1 and j � 1.Proof. We use double induction on k and j.Case 1. 1 � k � 2: The lemma follows from the bounds Tu1(n) � n�̂0(n) andTu2(n) � n�̂1(n).Case 2. k � 3 and j = 1: We need to show that Tuk(Kk(1)) � 4Kk(1). Consider abinary tree B having Kk(1) nodes on which a right twist sequence is performed. DivideB into a sequence of Kk�2( k=2 )=2 blocks of size 2k each. Each k-turn is of one of thefollowing types:Type A. All of the nodes involved in the k-turn belong to a single block: Since ablock has only 2k nodes, there can be at most one such k-turn per block.Type B. Some two nodes of the k-turn belong to a single block, but not all of thenodes of the turn are in that block: Let C denote the block tree of this block. The k-turncauses either an increase in the size of the right path of C, or a decrease in the size ofthe left path of C, or both. Hence the number of Type-B k-turns is at most 2Kk(1).Type C. Each node of the k-turn belongs to a di�erent block: To handle this case,we label the root of each block global. The global nodes in B induce a binary tree G,called the global tree. The root of G is identical to the root of B. The left child of a
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3.2. COUNTING TWISTS, TURNS, AND CASCADES 49node x in G is the highest global node in the left subtree of x in B. The right child ofa node is de�ned similarly. It is easy to see that the left and right children of any nodein G are unique. The e�ect on G of a rotation on B is analogous to the e�ect of such arotation on a block tree of B: A rotation on B translates into a rotation on G if both ofthe nodes of the rotation are global; otherwise, G is una�ected. (If a rotation changesthe root of a block then the global role passes from the old root to the new root but thisdoes not a�ect the global tree.)Suppose that the k-turn turns the left subpath x1 � x2 � � � � � xk+1 of B into aright subpath. Since all the xis are from di�erent blocks, the nodes x2; x3; . . . ; xk are allglobal. Therefore, the k-turn results in a (k � 2)-turn on G (if x1 or xk+1 is also global,then some right single rotations are also performed on G.) The number of (k� 2)-turnsthat can be performed on G is at mostTuk�2(Kk�2( k=2 )=2) � Tuk�2(Kk�2( k=2 ))=2 (By Lemma 3.1b)� 2 k=2 Kk�2( k=2 ) (By the induction hypothesis)< Kk(1):This gives an upper bound of Kk(1) for the number of Type-C k-turns performed on B.Summing together the above bounds for the three types of k-turns, we obtain a boundof Kk�2( k=2 )=2 + 2Kk(1) +Kk(1) � 4Kk(1)for the total number of k-turns in the right twist sequence. This completes Case 2.Case 3. k � 3 and j � 2: We divide the binary tree on which the right twistsequence is executed into Kk(j)=Kk(j � 1) blocks of size Kk(j � 1) each. We split thek-turns into the three types de�ned in Case 2 and obtain the following tally for eachtype of turn:Number of Type-A k-turns� Kk(j)Kk(j � 1) :4(j � 1)Kk(j � 1) (By the induction hypothesis)� 4(j � 1)Kk(j):Number of Type-B k-turns � 2Kk(j):Number of Type-C k-turns
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50 CHAPTER 3. THE DEQUE CONJECTURE� Tuk�2(Kk�2(Kk(j � 1)=4)=2)� Tuk�2(Kk�2(Kk(j � 1)=4))=2 (By Lemma 3.1b)� Kk(j � 1)Kk�2(Kk(j � 1)=4)=2 (By the induction hypothesis)= Kk(j):Hence the total number of k-turns in the sequence is at most4(j � 1)Kk(j) + 2Kk(j) +Kk(j) < 4jKk(j):This �nishes Case 3.Combining the above lemma with Lemmas 3.1b and 3.3, we obtain the upper boundfor Tuk(n) for all k and n:Theorem 3.2 Tuk(n) � ( 8n�̂ k=2 (n) if k 6= 38n log logn if k = 3The upper bound for cascades is derived analogously:Theorem 3.3 Ck(n) � ( 8n�̂ k=2 (n) if k 6= 38n log log n if k = 3Proof. It su�ces to prove Lemma 3.4 for Ck(n): Ck(Kk(j)) � 4jKk(j), for all k � 1and j � 1. Referring to the proof of Lemma 3.4, only the handling of Cases 2 and 3has to be modi�ed. Consider Case 2. As before, the blocks have size 2k each. Thek-cascades are categorized as follows:Type A. All nodes involved in the cascade belong to a single block: There is at mostone Type-A cascade per block.Type B. One of the cascade rotations involves a pair of nodes belonging to a singleblock, but not all of the nodes of the cascade are in that block: If the cascade rotates anedge that lies on the left path of some block, then the length of the left path of the blockdecreases by at least 1. Alternately, if the lowest three nodes involved in the cascade arefrom the same block, then the number of nodes in that block whose left depth is at most1 increases. We conclude that the number of Type-B cascades falling under the above
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3.2. COUNTING TWISTS, TURNS, AND CASCADES 51categories is at most 2Kk(1)�Kk�2( k=2 ). In every remaining Type-B k-cascade, onlythe lowest cascade rotation is intrablock and the lowest three nodes do not belong tothe same block. Each such cascade behaves like a Type-C cascade in that it causes a(k � 2)-cascade on the global tree (de�ned below) which accounts for it.Type C. Each cascade rotation involves a pair of nodes belonging to di�erent blocks:In this case for each block, in addition to the root of the block, we also label the left childof the root within the block global, if it exists; if the root has no left child, then the rightchild of the root is labeled global. Right rotations are propagated from the original treeto the global tree as described in Lemma 3.4 except in the following situation: Whenthe edge joining the root and its left child, say l, in a block is rotated, the left child of l,say ll, now becomes global, and if ll is not adjacent to l in B, this results in a series ofright single rotations on the global tree (See Figure 3.6). Under this de�nition of globaltree, the (k � 2) interior rotations performed by any Type-C k-cascade are all global.Hence, each Type-C k-cascade translates into a right (k � 2)-cascade and a sequence ofright single rotations on the global tree. Therefore the total number of k-cascades in thesequence is at mostKk�2( k=2 )=2 + 2Kk(1)�Kk�2( k=2 ) + Ck�2(Kk�2( k=2 )) < 4Kk(1):This completes Case 2 in the proof of Lemma 3.4 for cascades. Case 3 is handled similarly.3.2.2 Lower BoundsThe lower bound right twist sequences are inductively constructed by mimicking thedivide-and-conquer strategy used to derive the upper bounds. The lower bound sequencesalways transform a left path tree into a right path tree. The tree is partitioned into acollection of vertex-disjoint block trees and a global tree is formed by selecting nodesfrom each block tree. The lower bound sequence for a tree is constructed by inductivelyconstructing similar lower bound sequences for the block trees and for the global tree andweaving these sequences together. Actually, we �rst inductively construct a sequence ofright twists as well as deletions having su�ciently many rotations of the given type andthen remove the deletions to obtain the lower bound sequence.We need some de�nitions. For all positive integers k, a right k-twist-deletion sequence
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52 CHAPTER 3. THE DEQUE CONJECTURE

The global tree
The original tree ******** **

Figure 3.6: The e�ect of a right single rotation involving the root of a block and its leftchild within the block on the global tree. Circles denote the nodes of the block; othersymbols denote the nodes from other blocks. The starred nodes in the original tree arethe global nodes.
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3.2. COUNTING TWISTS, TURNS, AND CASCADES 53is de�ned to be an intermixed sequence of right single rotations, right k-twists anddeletions of the leftmost node performed on a binary tree. Right k-turn-deletion sequencesand right k-cascade-deletion sequences are de�ned analogously. Consider a right twistthat is performed on some left subpath x0 � x1 � � � � � xl of a binary tree, where x0 isthe lowest node on the subpath. x0 is called the base of the twist. If xk is the left childof a node y (say) in the tree, then the twist is called an apex twist and y is the apex ofthe twist. Otherwise, the twist is called apexless.The lower bound for Twk(n) for n of the form Lk(j) =  k + j � 1k ! is given by:Lemma 3.5 Twk(Lk(j)) �  k + j � 1k + 1 ! for all k � 1 and j � 1.Proof. For any pair of positive integers k and j, we inductively construct a right k-twist-deletion sequence for a left path tree of Lk(j) nodes having the following properties:1. The sequence deletes all the nodes from the tree.2. A right k-twist always involves the leftmost node of the tree.3. A deletion always deletes the root of the tree.4. The sequence has exactly  k + j � 1k + 1 ! k-twists.The removal of the deletions from the sequence would yield a right twist sequence havingthe desired number of k-twists.Case 1. k = 1 or j = 1: Easy.Case 2. k � 2 and j � 2: Divide the left path tree into a lower block of size Lk�1(j)and an upper block of size Lk(j � 1). Recursively perform a right (k� 1)-twist-deletionsequence, say Ŝ, on the lower block tree. For each (k�1)-twist in Ŝ, �rst rotate the edgejoining the root of the lower block with its parent and then perform the (k� 1)-twist onthe block. This is equivalent to a k-twist involving the leftmost node of the tree. Eachdeletion in Ŝ is modi�ed by �rst making the deleted node the root of the tree using rightrotations and then deleting the node. By property 4 of Ŝ, the number of (k � 1)-twistsin Ŝ is exactly  k + j � 2k !. The initial depth of the root of the lower block equals
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54 CHAPTER 3. THE DEQUE CONJECTURELk(j � 1) =  k + j � 2k !. Since each (k� 1)-twist in Ŝ reduces the depth of the root ofthe lower block by 1 and no other operation in Ŝ a�ects the depth, it is always possible torotate the root of the lower block just before the execution of any (k�1)-twist in Ŝ. Theconstruction is completed by recursively performing a right k-twist-deletion sequence,say �S, on the upper block.The sequence obviously satis�es properties 1{3. The total number of k-twists per-formed by the sequence equals(the number of (k � 1)-twists in Ŝ) + (the number of k-twists in �S)=  k + j � 2k !+  k + j � 2k + 1 ! (By the induction hypothesis)=  k + j � 1k + 1 !:This proves property 4.Combining Lemma 3.1a with the above lemma yields:Theorem 3.4 Twk(n) � n1+1=k=2e� O(n) for all k � 1 and n � 1.We construct the lower bound sequences for turns. As in the upper bound proof, weneed a new Ackerman-like hierarchy of functions. De�ne:B1(j) = j for all j � 1B2(j) = 2j � 1 for all j � 1Bi(j) = ( 1 if i � 3 and j = 1((i+ 1)jBi(j � 1) + 1)Bi�2((i+ 1)jBi(j � 1)) if i � 3 and j � 2The function Bi grows essentially at the same rate as the Ackerman function A i=2 :Lemma 3.6 1. B3(j) � A(2)1 (2j), for all j � 1.2. Bi(j) � A i=2 (3j) for all i 6= 3 and j � 1.The lower bound for Tuk(n) for n of the form Bk(j) is given by:Lemma 3.7 Tuk(Bk(j)) � (1=2)(j� 3)Bk(j) for all k � 1 and j � 1.
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3.2. COUNTING TWISTS, TURNS, AND CASCADES 55Proof. For any pair of positive integers k and j, we inductively construct a rightk-turn-deletion sequence for the left path tree of Bk(j) nodes having the following prop-erties:1. The sequence deletes all the nodes from the tree.2. A right k-turn always involves the leftmost node of the tree.3. A deletion always deletes the root of the tree.4. The sequence comprises at least (1=2)(j� 3)Bk(j) apex k-turns. Further, if k � 3,there are no apexless k-turns in the sequence.5. For any node x, the number of apex k-turns with base x is at most j.6. For any node x, the number of apex k-turns with apex x is at most j.Case 1. k = 1: The sequence repeatedly rotates the leftmost node to the root anddeletes it.Case 2. k = 2: Divide the left path tree into a lower left subpath comprising 2j�1�1nodes, a middle node, and an upper left subpath comprising 2j�1�1 nodes. Recursivelyperform a right 2-turn-deletion sequence on the lower subpath. Modify each deletion inthis sequence as follows: Perform a 2-turn on the subpath de�ned by the deleted node,say x, its parent (the middle node), and its grand parent; make x the root of the treeby successively rotating the edge joining it and its parent; delete x from the tree (thisalso deletes x from the lower subpath.) Next, delete the middle node which is currentlythe root of the tree. Finally, recursively perform a right 2-turn-deletion sequence on theupper subpath (See Figure 3.7).This sequence performs (j � 2)2j�1 + 1 2-turns of which exactly j � 1 are apexless.Therefore the number of apex 2-turns is at least (j � 3)2j�1 � (1=2)(j � 3)B2(j). Thisproves property 4. The remaining properties are easy to check.Case 3. k � 3 and j = 1: Just delete the only node in the tree.Case 4. k � 3 and j � 2: Let s = (k + 1)jBk(j � 1). We inductively construct thesequences of operations performed on the block trees of the tree:
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2j�1 � 32j�1 � 3

2j�1 � 22j�1 � 22j�1 � 12j�1 � 1
of ellipsesthe subpathRecurse on

of circlesthe subpathRecurse on r.rotationsright 2-turn r.rotations r.2-turn;r.2-turn;r.rotations

Figure 3.7: The lower bound construction for right 2-turns. The construction recursivelytransforms a left path tree of size 2j � 1 into a right path tree.
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3.2. COUNTING TWISTS, TURNS, AND CASCADES 57Lemma 3.8 There exists a right k-turn-deletion sequence for a left path tree of size s+1satisfying properties 1 and 2 and the following properties:�3. A deletion that is not the last operation in the sequence always deletes the left childof the root.�4. The sequence comprises at least (1=2)(j � 4)s+ j right k-turns all of which are apexturns.�5. For any node x, the number of apex k-turns with base x is at most j � 1.�6. For any node x, the number of apex k-turns with apex x is at most j � 1.�7. The root of the tree is always the rightmost node.Proof. Divide the nodes of the tree excluding the root into a sequence of (k + 1)jblocks of size Bk(j�1) each. Perform a right k-turn-deletion sequence obeying properties1{6 on the lowest block. (The inductive hypothesis implies the existence of such asequence.) Denote this sequence by S. Each deletion in S except the last is modi�ed byrotating the deleted node up the tree until it is adjacent to the root and then deletingit. The deletion of the last node in the block, say x1, is implemented di�erently. x1 isrotated up the tree until it is in contact with the root of the next higher block, say x2.x2 is rotated upwards in a similar fashion in order to make it adjacent to the root of thenext higher block, say x3. In this manner we create a left subpath x1 � x2 � � � � � xk+1containing the roots of the lowest k+1 blocks. Next, a right k-turn is performed on thissubpath and then x1 is rotated up the tree and deleted. Following this, S is executedon the blocks of nodes x2; x3 . . . ; xk+1 in succession. Each deletion is modi�ed by �rstmaking the deleted node adjacent to the root and then deleting it. At the conclusion ofthis sequence of operations, all the nodes in the lowest k+1 blocks of the tree have beendeleted and at least (1=2)(j� 4)(k+ 1)Bk(j� 1)+ 1 apex k-turns have been performed.The above sequence of operations is repeated on each group of k+1 consecutive blocks,choosing the lowest group of blocks currently in the tree each time. The �nal operationof the sequence deletes the root.It is obvious that the right k-turn-deletion sequence constructed above satis�es prop-erties 1,2,�3 and �7. Since there are j groups of k + 1 blocks each, the total number of
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58 CHAPTER 3. THE DEQUE CONJECTUREapex k-turns executed by the sequence is at least (1=2)(j� 4)s+ j. Further, by property4 of S, the sequence performs only apex k-turns. This proves property �4. Properties �5and �6 are easy to show using properties 5 and 6 of sequence S.We construct a right k-turn-deletion sequence for the left path tree of size Bk(j)satisfying the six properties. The tree is partitioned into Bk�2(s) blocks of size s + 1each. The root of each block is labeled global. The global nodes form a global tree asdescribed in the proof of Lemma 3.4. By the induction hypothesis, there exists a right(k � 2)-turn-deletion sequence, say �S, for the global tree, satisfying properties 1-6. Weconstruct the right k-turn-deletion sequence, denoted S, for the original tree by mappingeach global tree operation in �S onto a sequence of original tree operations, preserving thecorrespondence between the two trees. The following invariants de�ne the relationshipsbetween the two trees:A. Let B denote the block containing the leftmost node of the tree and let x denotethe root of B. Suppose that d nodes have been deleted from B so far. Then,i. The number of apex (k � 2)-turns performed so far on the global tree thathad x as their base is exactly d.ii. Denote by Ŝ the right k-turn-deletion sequence constructed by Lemma 3.8that deletes all the nodes from the left path tree of size s+ 1. Let T denotethe tree that results when the pre�x of Ŝ up to the dth deletion is executedon the left path tree. The block tree of B equals T .B. Consider any block B that does not contain the leftmost node of the tree. Let xdenote the root of B. The block tree of B is a left path tree which is divided intothe root and two subpaths. The nodes in the lower subpath, called black nodes,are the nodes in B that have participated in a k-turn. The nodes in the uppersubpath are called white nodes.i. If b denotes the number of black nodes currently in B, then exactly b of theapex (k � 2)-turns performed so far on the global tree had x as their apex.C. If x is a global node with a right child y in the global tree, y is also the right childof x in the original tree.
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3.2. COUNTING TWISTS, TURNS, AND CASCADES 59D. If x is a global node with a left child y in the global tree, there is a left subpathx = x0 � x1 � . . .� xk+1 = y in the original tree such that x1; x2; . . . ; xk are theset of white nodes in the block of x.Each global tree operation in �S is simulated as follows:Right rotation: Suppose that a global tree edge [x; y], such that y is a left child of x,is rotated. In the original tree we repeatedly rotate the edge connecting y and itsparent until x becomes the right child of y. Only invariants C and D are a�ectedby the rotations. It is not hard to see that both these invariants are true after thelast rotation.Deletion: Suppose that a global node x is deleted. Since x is the root of the global tree,it is also the root of the original tree. Let d denote the number of nodes deleted sofar from the block of x. We perform Ŝ (the sequence constructed by Lemma 3.8)on the block tree of x starting immediately after the dth deletion. Each deletion ismodi�ed so that the deleted node is �rst made the root of the tree and then deleted.Invariant A.ii ensures that this is valid and that this will result in the deletion ofall the nodes in the block of x from the tree. Therefore this sequence of operationsreestablishes the correspondence between the global tree and the original tree.Apexless (k � 2)-turn: Break up the turn into a sequence of k�2 global rotations andsimulate each global rotation as speci�ed above.Apex (k � 2)-turn: Suppose that a global tree subpath x1 � x2 � � � � � xk�1 is turnedand that x1 is the base of the turn. Let x0 denote the leftmost node in the block ofx1 and let xk denote the parent of xk�1 in the original tree. We create the subpathx0 � x1 � . . .� xk in the original tree and perform a k-turn on this subpath. Thisis implemented as follows:1. Let d denote the number of nodes deleted so far from the block of x1. Exe-cute the segment of sequence Ŝ between the dth and the (d+ 1)st deletions(excluding the deletions) on the block tree of x1. By Lemma 3.8, property �3,this makes node x0 the left child of x1.2. Rotate x1 up the tree until its parent is x2. Continuing in this fashion, rotatethe nodes x2; x3; . . . ; xk�1 upwards, creating a left subpath x0�x1�� � ��xk.
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60 CHAPTER 3. THE DEQUE CONJECTURE3. Perform a k-turn on the subpath x0 � x1 � � � � � xk.4. Rotate x0 up the tree, making it the root, and delete it.5. Since xk has become black due to the k-turn, the edge joining xk and its leftchild is repeatedly rotated until the left child of xk is not a global node.Invariant B.i and property 6 of �S guarantee that xk is white at the beginning of thissequence of operations. Similarly, invariant A.i and property 5 of �S guarantee thatx0 is well de�ned. Observe that all invariants are true at the end of the simulation.The sequence of operations performed on the original tree during the simulation of �Sconstitutes sequence S.S deletes all the nodes in the original tree since �S deletes all the nodes in the globaltree. This proves that S satis�es property 1.Properties 2 and 3 of S are apparent from the simulation procedure.By Lemma 3.8, at least (1=2)(j � 4)s + j apex k-turns (local turns) are performedduring the execution of Ŝ on any particular block. Hence the total number of local turnssummed over all blocks is at least (1=2)(j�4)sBk�2(s)+jBk�2(s). The number of turnsinvolving global nodes (global turns) equals the number of (k � 2)-turns in �S which, bythe induction hypothesis, is at least (1=2)(s� 3)Bk�2(s). Therefore the total number ofk-turns in S is at least (1=2)(j � 4)sBk�2(s) + jBk�2(s) + (1=2)(s� 3)Bk�2(s)= ((1=2)(j� 3)s+ j � (3=2))Bk�2(s)> (1=2)(j� 3)Bk(j):Evidently, every k-turn in S has an apex. This proves property 4.For any node x, there is at most one global turn with x as the base since x is deletedfrom the tree immediately after the turn. By Lemma 3.8, there are at most j � 1 localturns with x as the base. We conclude property 5. Property 6 is proved analogously.Combining the above lemma with Lemma 3.1b yields:Theorem 3.5 Tuk(n) � ( (1=12)n�̂ k=2 (n)� O(n) if k 6= 3(1=8)n log logn� O(n) if k = 3
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3.2. COUNTING TWISTS, TURNS, AND CASCADES 61The lower bound for cascades is given by:Theorem 3.6 Ck(n) � ( (1=12)n�̂ k=2 (n)�O(n) if k 6= 3(1=8)n log log n�O(n) if k = 3Proof. We modify the lower bound proof for Tuk(n) given above. De�ne:B01(j) = j for all j � 1B02(j) = 3:2j � 2 for all j � 1B0i(j) = ( 1 if i � 3 and j = 1(4ijB0i(j � 1) + 3)B0i�2(4ijB0i(j � 1)) if i � 3 and j � 2It is easy check that Lemma 3.6 holds for the new hierarchy fB0ig. We prove the analogueof Lemma 3.7 for Ck(n), which states that Ck(B0k(j)) � (1=2)(j � 3)B0k(j) for all k � 1and j � 1. We construct a right k-cascade-deletion sequence that converts a left pathtree of size B0k(j) into a right path tree and satis�es the analogues of properties 1{6 forcascades.Case 1. k = 1 or j = 1: Easy.Case 2. k = 2: Divide the left path tree into a lower subpath and an uppersubpath, each having 3:2j�1 � 2 nodes, and two middle nodes. The right 2-cascade-deletion sequence is constructed by recursing on the lower and upper subpaths in turnand performing a 2-cascade involving the deleted node and the middle nodes for eachdeletion in the �rst recursive step. The sequence comprises (3j � 4)2j�1 � j + 2 �(1=2)(3:2j � 2)(j � 3) apex 2-cascades and satis�es all the properties.Case 3. k � 3 and j � 2: Let s = 4kjB0k(j � 1). A p; q-zigzag tree is a tree that isconstructed from a p-node left path tree by inserting a q-node left path tree as the rightsubtree of the leftmost node. We extend Lemma 3.8 to cascades and construct a rightk-cascade-deletion sequence, say Ŝ, for a 3; s-zigzag tree that comprises (1=2)(j�4)s+2japex k-cascades. Each deletion in the sequence, except for the last two deletions, deletesthe leftmost grandchild of the root. The proof divides the tree into 2j groups of 2kblocks each, each block, in turn, of size B0k(j � 1), and recursively performs a right k-cascade-deletion sequence on each block, choosing the blocks in bottom-to-top order. Ak-cascade is performed on the roots of the blocks within each group, yielding 2j extracascades.
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62 CHAPTER 3. THE DEQUE CONJECTUREThe tree is partitioned into B0k�2(s) blocks of size s + 3 each. The global tree isconstructed from the roots of the blocks and a right (k � 2)-cascade-deletion sequence,say �S, satisfying properties 1{6 is recursively performed on it. The simulation of �S onthe original tree maintains the invariants A (with expression s + 3 replacing s + 1), Cand D and the following modi�cation of invariant B:�B. Consider any block B that does not contain the leftmost node of the tree. Let xdenote the root of B. Block B induces a connected subtree in the original tree.Further, if exactly b of the (k � 2)-cascades performed so far on the global treehad x as their apex, then the block tree of B is a (s� b+ 3); b-zigzag tree.The simulation of global tree operations other than apex (k � 2)-cascades is as before.Consider an apex (k�2)-cascade in �S involving a global tree subpath x1�x2�� � ��x2k�4,such that x1 is the base of the cascade. Let y1 and y2 denote, respectively, the leftmostnode in the block of x1 and the left child of x1. Let z1 and z2 denote, respectively,the parent and the grandparent of x2k�4 in the original tree. The global tree cascade issimulated on the original tree by creating the subpath y1�y2�x1�x2�� � ��x2k�4�z1�z2in the original tree, performing a k-cascade on this subpath, and �nally deleting y1 fromthe tree. We verify that the resulting sequence, say S, satis�es property 4:# k-cascades in S = # local cascades + # global cascades� ((1=2)(j� 4)s+ 2j)B0k�2(s) + (1=2)(s� 3)B0k�2(s)> (1=2)(j� 3)B0k(j):The rest of the properties of S are easy to check. This completes the proof of Lemma 3.7for cascades. The theorem follows.3.3 An Upper Bound for the Deque ConjectureIn this section, we show that Splay takes O((m+n)��(m+n)) time to process a sequenceof m deque operations on an n-node binary tree. We reduce a deque operation sequenceto right cascade sequences on auxiliary trees and apply the upper bounds for cascades.De�ne the cost of a deque operation or a right twist operation to be the number ofsingle rotations performed by the operation.
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3.3. AN UPPER BOUND FOR THE DEQUE CONJECTURE 63The cost of a set of right cascades in a right twist sequence is given by:Lemma 3.9 Consider an arbitrary right twist sequence executed on an n-node binarytree. The total cost of anym right cascades in the sequence equals O((m+n)�(m+n; n)).Proof. Let l = 2�(m+ n; n) + 2. Split each of the m right cascades into a sequenceof right l-cascades followed by a sequence of at most l � 1 rotations. By Theorem 3.3,the total number of right l-cascades is at most 8n�̂ l=2 (n). This yields a bound of(m+ 8n�̂ l=2 (n))l for the number of rotations performed by the m right cascades. Webound �̂ l=2 (n) as follows:A�(m+n;n)+1( m=n + 2) = A�(m+n;n)(A�(m+n;n)+1( m=n + 1))� A1(A�(m+n;n)( (m+ n)=n ))� n:Therefore �̂ l=2 (n) = �̂�(m+n;n)+1(n) � m=n + 2. The lemma follows.Remark. Hart and Sharir [19] proved a result similar to Lemma 3.9 concerningsequences of certain path compression operations on rooted ordered trees. Their resultcan be derived from the analogue of Lemma 3.9 for turns by interpreting turns in abinary tree as path compressions on the rooted ordered tree representation of the binarytree. It is interesting that they also use ideas similar to blocks and global tree in theirproof.We estimate the cost of a sequence of deque operations performed at one end of abinary tree that also has left and right path rotations:Lemma 3.10 Consider an intermixed sequence of Pops, Pushs, left path rotations andright path rotations performed on an arbitrary n-node binary tree. The total cost of Popoperations equals O((m+n)��(m+n)), where m denotes the number of Pops and Pushsin the sequence.Proof. We simplify the sequence through a series of transformations without under-counting Pop rotations.Simpli�cation 3.1 The �rst operation of the sequence is a Pop.
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64 CHAPTER 3. THE DEQUE CONJECTURETransformation. Delete the operations preceding the �rst Pop from the sequenceand modify the initial tree by executing the deleted pre�x of the sequence on it.Simpli�cation 3.2 The sequence does not contain Push operations.Transformation. For each Push operation, insert a node into the initial tree asthe symmetric order successor of the last node that was popped before the Push. ThePush operation itself is implemented by just rotating its corresponding node to the rootthrough right rotations.De�ne a Partialpop to be a sequence of arbitrarily many right 2-turns performedon the leftmost node of a binary tree followed by deletion of the node.Simpli�cation 3.3 The sequence consists of only Partialpops and left path rotations;the lemma is true if the total cost of Partialpop operations equals O((m+n)��(m+n)),where m denotes the number of Partialpops in the sequence and n denotes the size ofthe initial tree.Transformation. Normalize the tree by rotating the nodes on the right path acrossthe root into the left path and consider the resulting sequence.Simpli�cation 3.4 The sequence comprises only right cascades; the lemma is true ifthe total cost of any m cascades in the sequence equals O((m+ n)��(m+ n)).Transformation. Instead of deleting nodes at the end of Partialpops, rotate themupwards to the right path.The lemma follows from Simpli�cation 4 and Lemma 3.9.The upper bound for the Deque Conjecture is given by:Theorem 3.7 The cost of performing an intermixed sequence of m deque operations onan arbitrary n-node binary tree using splay equals O((m+ n)��(m+ n)).Proof. Divide the sequence of operations into a series of epochs as follows: The�rst epoch comprises the �rst maxf n=2 ; 1g operations in the sequence. For all i � 1,if the tree contains k nodes at the end of epoch i, then epoch i + 1 consists of the
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3.4. NEW PROOFS OF THE SCANNING THEOREM 65next maxf k=2 ; 1g operations in the sequence. The last epoch might consist of feweroperations than speci�ed. It su�ces to show that the cost of an epoch that starts witha k-node tree is O(k��(k)), since the sum of the sizes of the starting trees over all epochsis O(m+ n).Consider an epoch whose initial tree, say T , has k � 2 nodes. Divide T into a leftblock of k=2 nodes and a right block of k=2 nodes. This partitioning ensures thatneither block gets depleted before the epoch completes. The total cost of Pushs andInjects is 0, since only rotations contribute to the operation cost. We show that thetotal cost of Pops is O(k��(k)). The same proof will apply to Ejects.A Pop on T translates into a Pop on the left block. The e�ect of a Pop on the rightblock is a series of left path rotations. It is easy to see that the total number of singlerotations performed by a Pop is at most(the number of single rotations performed by the Pop on the left block) +2(the number of left path rotations performed on the right block) + 2:A Push operation on the tree propagates as a Push on the left block. An Ejectperforms only right path rotations on the left block. An Inject does not a�ect the leftblock. Hence by Lemma 3.10, the total number of single rotations performed by all thePops on the left block equals O(2 k=2 ��(2 k=2 )) = O(k��(k)). A left path rotationon the right block decreases the size of the left path of the block by 1. The initial sizeof this path is at most k=2 and the size increases by at most 1 per deque operation.Therefore the total number of left path rotations performed on the right block due toPops is at most k + 1. This leads to an O(k��(k)) upper bound on the total cost of allthe Pops performed during the epoch.3.4 New Proofs of the Scanning TheoremIn the two subsections of this section, we describe a simple potential-based proof of theScanning Theorem and an inductive proof that generalizes the theorem.
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66 CHAPTER 3. THE DEQUE CONJECTURE3.4.1 A Potential-based ProofThe proof rests on the observation that a certain subtree of the binary tree, called thekernel tree, which is mainly involved in the splay operations always has a very niceshape. As the nodes of the original tree are accessed using splays, the kernel tree evolvesthrough insertions and deletions of nodes at the left end, and left path cascades causedby the splays. Each node of the kernel tree is assigned a unimodal potential function,that is, a potential function that initially steadily increases to a maximum value andthen steadily decreases once the node has progressed su�ciently through the kernel tree.The nice shape of the kernel tree guarantees that most of the nodes involved in eachsplay are in their potential decrease phase, enabling their decrease in potentials to payfor all the rotations and the small increase in potentials of the nodes in their potentialincrease phase.We need some de�nitions. A binary tree is called rightist if the depths of the leavesof the tree increase from left to right. The left and right heights of a binary tree arede�ned, respectively, to be the depths of the leftmost and rightmost nodes. The rightinner height of a node x is de�ned to be the depth of the successor of x within x's subtreeif x has a right subtree and 0 otherwise.We are ready to describe the proof. At any time during the sequence of splays,the set of nodes in the current tree that have been involved in a splay rotation form aconnected subtree of the tree, called the kernel tree, whose root coincides with the rootof the right subtree of the tree. Initially, the kernel tree is empty. The sequence of splayson the the original tree propagates into an intermixed sequence of n Pushs and n Popson the kernel tree, where a Push inserts a new node at the bottom of the left path ofthe tree and a Pop splays at and deletes the leftmost node of the tree. Our goal is toshow that the cost of the sequence of operations on the kernel tree equals O(n). Thetheorem would then follow immediately.The argument focuses on the sequence of operations on the kernel tree. Since thekernel tree is created by a sequence of Pushs and Pops, it satis�es the following twoproperties:1. The subtrees hanging from the left and right paths of the tree are rightist.2. If T1 and T2 are subtrees hanging from the left path with T1 to the left of T2, then
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3.4. NEW PROOFS OF THE SCANNING THEOREM 67rightheight(T1) � leftheight(T2).This can be easily shown using induction.We use the following potential function. The potential of the kernel tree equals thesum of the potentials of all its nodes. The potential of a node consists of an essentialcomponent and a nonessential component. For any node x, let ld(x) and rih(x) denote,respectively, the left depth and the right inner height of x. The essential potential of xequals minf log ld(x) ; rih(x)g unless x is on the right path in which case its essentialpotential equals 0. The essential potential of a node is a unimodal function of time,since the potential �rst monotonely increases from 0 until the node's right inner heightovertakes the logarithm of its left depth and then monotonely decreases. The nonessentialpotential of x equals 2 units if x is not on the right path and x's left child has the sameright inner height as x, and equals 0 otherwise.We compute the amortized cost of kernel tree operations. Push has amortized cost2, to provide for the nonessential potential that may be needed by the parent of theinserted node. Consider a Pop. Let x denote the lowest node on the left path suchthat log ld(x) � rih(x). Every double rotation of a splay step that involves twonodes with identical right inner heights is paid for using the nonessential potential ofthe node leaving the left path. The number of remaining double rotations is at mostld(x)=2 + log(ld(x) + 1) . The �rst term accounts for the double rotations involvingtwo proper ancestors of x and the second term accounts for the double rotations involvingthe descendents of x. Each latter category rotation increases the potential by at most1, contributing to a net increase of at most log(ld(x) + 1) units of potential. Thehalving of the left depths of the ancestors of x caused by the splay operation decreasesthe potential by exactly ld(x)� 1. The amortized cost of Pop is therefore bounded byld(x)=2 + 2 log(ld(x) + 1) � (ld(x)� 1) � 5:We conclude that at most 7n double rotations, hence at most 15n single rotations,are performed by the sequence of operations on the kernel tree. This proves the ScanningTheorem.



www.manaraa.com

68 CHAPTER 3. THE DEQUE CONJECTURE3.4.2 An Inductive ProofIn this section, we describe an inductive proof of a generalization of the Scanning The-orem. The proof technique is similar to the method used to derive the upper bounds inSection 3.2.1. The binary tree is partitioned into blocks of constant size so that the totalnumber of single rotations within blocks is linear. The induction is applied to a globaltree consisting of a constant fraction of the tree nodes. Since a splay on the original treetranslates into a much weaker rotation on the global tree, we have to incorporate thestrength of the rotations into the inductive hypothesis.We state the result. For any positive integer k and real number d, such that 1 �d � n, a right k-twist is called d-shallow if the lowest node involved in the twist has aleft depth of at most dk. Let S(d)(n) denote the maximum number of single rotationsperformed by d-shallow right twists in any right twist sequence executed on an n-nodebinary tree. We prove that S(d)(n) = O(dn). The Scanning Theorem follows fromS(2)(n) = O(n).We estimate the number of d-shallow right twists in a right twist sequence:Lemma 3.11 For any d � 1, the total number of d-shallow right twists in any righttwist sequence is at most 4dn.Proof. Consider any d-shallow right twist that rotates a sequence of edges, say[x1; y1], [x2; y2], . . ., [xk; yk], such that the left depths of the sequence of nodes xk, yk,xk�1, yk�1, . . ., x1, y1 is nonincreasing. Let ld(z) and ld0(z) denote, respectively, the leftdepths of any node z before and after the twist. For all i 2 [ k=2 ; k], we haveld0(xi)ld(xi) = 1� ild(xi) � 1� ikd � 1� 12d:In order to pay unit cost for a twist, we charge each node xi, such that i 2 [ k=2 ; k],minf2d=ld(xi); 1g debits. Let us prove that the total charge is at least 1. If ld(x k=2 ) �2d, then x k=2 is charged 1 debit. Otherwise, we have 1 � 2d=ld(xi) � 2=k for alli � k=2 . Since k=2 + 1 nodes are each charged at least 2=k debits, the net charge toall the nodes is at least 1.Now, we bound the total charge to a node over the entire sequence. Call a node deepif its left depth is greater than 2d and shallow otherwise. Suppose that a node receives
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3.4. NEW PROOFS OF THE SCANNING THEOREM 69a sequence of charges 2d=Lk,2d=Lk�1; . . . ; 2d=L0 while it is deep. ThenLi > 2d(1� 1=2d)i for all i � 0.Therefore the total charge to a node while it remains deep is at most(1� 1=2d)k + (1� 1=2d)k�1 + � � �+ 1 � 2d:A node receives at most 2d debits while it is shallow. This implies that any node ischarged at most 4d debits, giving a bound of 4dn for the total number of d-shallow righttwists.The upper bound for S(d)(n) is given by:Theorem 3.8 S(d)(n) � 87dn for all d � 1 and n � 1.Proof. The proof uses induction on n.Case 1. n � 174d: S(d)(n) �  n2! � 87dn:Case 2. n > 174d: Divide the tree into a sequence of n=K blocks such that eachblock except the �rst contains exactly K = 29d nodes. The �rst block may contain fewernodes. In each block except the �rst, the nodes with preorder numbers 1 to 4d withinthe block are global. The �rst block does not contain any global nodes. Notice that theglobal nodes of a block form a connected subtree within the block whose root coincideswith the root of the block. Further, if the left path of the block contains more than 4dnodes then all global nodes lie on the left path of the block. Otherwise all nodes on theleft path of the block are global. The global nodes in the tree form a global tree as inthe previous upper bound constructions. The size of the global tree is at most n=7:25.We analyze the e�ect of a original tree rotation on the global tree. An interblockright single rotation translates into a corresponding rotation on the global tree if bothnodes of the rotation are global. Otherwise the global tree is not a�ected. The analysisof an intrablock right single rotation involves the following cases:Local-local: The global tree is una�ected.Local-global: Again, the global tree is not a�ected, but the global role is transferredfrom the global node to the local node.
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70 CHAPTER 3. THE DEQUE CONJECTUREGlobal-global: Let [x; p] denote the rotated edge such that p is the parent of x. Ifthe left subtree of x within the block contains only global nodes, then the rotationsimply propagates to the global tree. Otherwise, p's global role is transferred to thenode, say x0, in p's block that had preorder number 4d+ 1 initially. Let p0 denotethe lowest ancestor of x0 in the original tree which is global. The e�ect of thetransfer of global role on the structure of the global tree is to contract edge [x; p]and add a new edge [x0; p0]. We show that the same transformation is realizablethrough a series of right single rotations in the global tree. These rotations areperformed by traversing the path from p to p0 in the global tree as follows (SeeFigure 3.8):Start at edge [p; x] and repeat the following operation until the last edgeon the path is reached: If the next edge on the path is a left edge, moveto the next edge; otherwise, rotate the current edge and move to thenext edge after the rotation. Finally, if x0 belongs to the right subtree ofp0 in the original tree, rotate the last global tree edge traversed.Remark. The operation performs all the rotations within the sub-tree of the global tree rooted at x. This is seen as follows. If x = p0,then no rotations are performed on the global tree. Otherwise, p0 lies inthe left subtree of x. Hence the successor of edge [p; x] on the global treepath from p to p0 is a left edge. This implies that the operation does notrotate edge [p; x]. Therefore all the rotations performed by the operationoccur in the subtree of the global tree rooted at x.At any during this traversal, contracting the current edge results in a tree that isidentical to the tree obtained by contracting the edge [x; p] in the initial tree, so itfollows that the above series of rotations on the global tree correctly simulates therotation of edge [x; p].In summary, a right single rotation of an edge [x; p], such that p is the parent of x,either does not a�ect the global tree, or translates into a rotation of the edge [x; p] inthe global tree, or translates into a sequence of right single rotations on the subtree ofthe global tree rooted at x. The rotation is called global if it results in a rotation of thecorresponding edge in the global tree and local otherwise.
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3.4. NEW PROOFS OF THE SCANNING THEOREM 71
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gx p p0x0
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gpx The global tree
The original tree**** * * * ** * **

Figure 3.8: The transfer of global role in an intrablock global-global rotation. Circlesdenote the nodes of the block. The starred nodes of the original tree are the globalnodes.
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72 CHAPTER 3. THE DEQUE CONJECTUREConsider the e�ect of a right twist in the original tree on the global tree. The sequenceof single rotations on the global tree caused by the right twist comprises l-rotations,caused by local rotations in the twist, and g-rotations, caused by global rotations in thetwist. The nodes involved in any l-rotation are distinct from the nodes involved in anyprevious g-rotation, hence we may transform the sequence of global tree rotations bymoving each l-rotation before all the g-rotations without altering the net e�ect of thesequence on the global tree. The su�x of the sequence consisting of all the g-rotationsde�nes a global twist on the global tree. In summary, the e�ect of a right twist in theoriginal tree on the global tree is a right rotation followed by a global twist correspondingto the subsequence of global rotations in the twist.We estimate the number of single rotations performed by d-shallow twists in a righttwist sequence executed on the tree. Consider any d-shallow twist in the sequence. De�nethe left path of the twist to be the left path resulting from the contraction of the rightedges on the access path of the lowest node involved in the twist. We classify the rightsingle rotations performed by the twist as follows:Type 1. Local, interblock rotation in which the top node is global: There is at mostone Type-1 rotation per twist because the left subtree of the bottom node of the rotationconsists of only local nodes.Type 2. Local, interblock rotation in which the top node is local: The top nodelies on the left path of its block and, since the node is local, it has 4d global ancestorswithin the block that lie on the left path of the twist. Notice that the top nodes ofdi�erent Type-2 rotations belong to di�erent blocks. Thus, if k2 denotes the number ofType-2 rotations performed by the twist, then the left path of the twist contains at least(4d+ 1)k2 edges. Since the number of edges on the left path of the twist is bounded bydk, we obtain that k2 � k=4 .Type 3. Local, intrablock rotation: For each Type-3 rotation, charge (8/3) debitsto the block in which the rotation is performed. If the number of Type-3 rotations is atleast (3k� 4)=8, the total charges to the blocks plus a charge of (4/3) debits to the twistitself pays for all the rotations performed by the twist.Type 4. Global rotation: Only the situation where the number of Type-3 rotations
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3.4. NEW PROOFS OF THE SCANNING THEOREM 73is less than (3k� 4)=8 needs to be considered. In this case at leastk � 1� k=4 � ( (3k � 4)=8 � 1) = k � k=4 � (3k+ 3)=8 � 3k=8global rotations are performed. Therefore the global twist performs at least 3k=8 rota-tions on the global tree, and it is (8d=3)-shallow. If we charge each such global twist(4/3) times the actual cost, then all the rotations can be paid for. This is seen as follows.Let k3 and k4 denote, respectively, the number of Type-3 and Type-4 rotations. Then,k3 + k4 � 3k=4� 1. The total charge is 8k3=3 + 4=3 + 4k4=3 which is minimized whenk3 = 0. When k3 = 0, the total charge is at least 4=3 + (4=3)(3k=4� 1) � k.Since each d-shallow twist is charged at most 4=3 debits, the total charge to all thed-shallow twists is at most 16dn=3 by Lemma 3.11. The total charge to a block ofsize s is at most 8 s2!=3. It follows that the total charge to all the blocks is at most4nK=3 � 116dn=3. By the inductive hypothesis, the total charge to all the (8d=3)-shallow global twists is at most (4=3)(87)(8d=3)(n=7:25) = 128dn=3. Therefore the sumtotal of all the charges is bounded by 16dn=3 + 116dn=3+ 128dn=3 � 87dn, completingthe induction step.
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Chapter 4Testing Set EqualityThe problem of maintaining a dynamic collection of sets under various operations arisesin numerous applications. A natural application is the implementation of high-level pro-gramming languages like SETL that support sets and permit operations such as equality,membership, union, intersection, etc. on them. The general problem of e�ciently main-taining sets under all of these operations appears quite di�cult. This chapter describes afast data structure for maintaining sets under equality-tests and under creations of newsets through insertions and deletions of elements1.4.1 IntroductionThe Set Equality-testing Problem is to maintain a collection of sets over a �nite, ordereduniverse under the following operations:� Equal(S; T ): Test if S = T .� Insert(S; x; T ): Create a new set T = S [ fxg.� Delete(S; x; T ): Create a new set T = Snfxg.The collection initially contains just the empty set. We would like to devise a datastructure for this problem that tests equality of sets in constant time and executes theremaining operations as fast as possible, under this constraint.1The work of this chapter was reported in a joint-paper with Robert E. Tarjan [31].75
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76 CHAPTER 4. TESTING SET EQUALITYIf sets are represented by unique storage structures, then equality-testing of a pair ofsets can be implemented in constant time by just checking whether they are representedby a single storage structure; uniqueness simply means that all the instances of a setare represented by a single storage structure. Following this natural approach, severalpeople have devised unique storage representations for sets that allow constant timeequality-tests and can be updated e�ciently. Wegman and Carter [35] gave a randomizedsignature representation for sets that can be updated in constant time and constantspace but errs with a small probability during equality-tests. Pugh [26] and Pugh andTietelbaum [27] gave an error-free randomized binary trie representation for sets thatcan be updated in O(logn) expected time and O(logn) expected space, where n denotesthe size of the updated set. Their data structures also support union and intersection ofsets, although less e�ciently. Yellin [40] gave a deterministic binary trie representationof sets that can be updated in O(log2m) time and O(logm) space, where m denotes thetotal number of updates.We devise a deterministic data structure for the Set Equality-testing Problem re-quiring O(logm) amortized time and O(logm) space per update operation. The datastructure is based on a solution to a more fundamental problem involving S-expressions.S-expressions [5] constitute the staple data type of programming language LISP. AnS-expression is either an atom (signifying a number or a character string) or a pairof S-expressions. An atom S-expression is represented in storage by a node; a pair S-expression is represented by a node with left and right pointers that point to nodesrepresenting the component S-expressions. We store S-expressions uniquely, i.e. all in-stances of an S-expression are represented by a single node. Cons(s1,s2) returns theS-expression (s1:s2). A cascade of Cons operations is a sequence of Cons operations inwhich the result of each Cons operation is an input to the next Cons operation. Forinstance, s1 := Cons(s0; t0)s2 := Cons(s1; t1)...sf := Cons(sf�1; tf�1)is a cascade of f Cons operations. The S-expression problem in question is to devisea data structure for e�ciently implementing cascades of Cons operations on uniquelystored S-expressions.
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4.1. INTRODUCTION 77Unique storage of S-expressions makes Cons operations expensive. Given a pairof S-expressions, a Cons operation has to check whether there is a third S-expressionin the collection with these S-expressions as its component S-expressions. Viewing thecollection of S-expressions as a dictionary, this is equivalent to performing a searchoperation, possibly followed by an insertion, on the dictionary. Single Cons operationscan be implemented in O(plog F ) time and O(1) amortized space or, alternately, inO(1) time and O(F �) space, where F denotes the total number of Cons operationsperformed and � is any positive constant. This implementation is based on Willard'sdata structure [37] for maintaining a dictionary in a small universe. Universal hashing[8] and dynamic perfect hashing [13] o�er alternate implementations that require O(1)randomized amortized time and O(1) amortized space per Cons operation.We develop a data structure that performs a cascade of f Cons operations inO(f + logmc) amortized time, where mc denotes the total number of cascades per-formed. The total space used is proportional to the number of distinct S-expressionspresent. This means that Cons operations can be implemented in constant amortizedtime and constant space in situations where these operations occur in long cascades.Our set-equality-testing data structure is an immediate corollary of this result. Whensets are represented by binary tries, an update operation translates into a cascade ofat most logm Cons operations and requires O(logm) amortized time using this datastructure. Many list-oriented functions in functional languages (LISP, for instance) in-volve cascades of Cons operations and can be implemented e�ciently using this method;function Append is a typical example:Append([v1; v2; . . . ; vk]; [w1; w2; . . . ; wl]) �s1 := Cons(vk; [w1; w2; . . . ; wl])s2 := Cons(vk�1; s1)...Result := Cons(v1; sk�1)The chapter is organized as follows. In Sections 4.2 and 4.3, we describe the datastructure for equality-testing of sets and analyze its performance. In Section 4.4, wediscuss directions for further work.
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78 CHAPTER 4. TESTING SET EQUALITY4.2 The Data StructureWe reduce the Set Equality-testing Problem to the problem of implementing cascadesof Cons operations on uniquely stored S-expressions. The elements seen so far arenumbered in serial order and de�ne the current universe U = [1; jU j]. Each set isrepresented by a binary trie [21] in this universe. The binary trie representing a setS is an S-expression that stores the elements of S as atoms and is de�ned recursively.Let 2p < jU j � 2p+1. A singleton set is represented by an atom and the empty set,by the atom NIL. If jSj � 2, then S is represented by a pair (s1:s2), where s1 and s2are, respectively, the S-expressions representing subsets S \ [1; 2p] and S \ [2p + 1; jU j]in their respective subuniverses. We store S-expressions uniquely so that two sets areequal if and only if their S-expressions are represented by a single node. A set updateoperation translates into a cascade of at most log jU j � logm Cons operations, whichcan be implemented in O(logm) amortized time and O(logm) space using a methoddescribed below; m denotes the total number of update operations.We describe an e�cient data structure for performing cascades of Cons operationson uniquely stored S-expressions. The data structure requires O(f + logmc) amortizedtime to perform a cascade of f Cons operations, where mc denotes the total number ofcascades performed. Consider the collection of nodes representing S-expressions. Num-ber these nodes serially in their order of creation. A parent of a node v is de�ned tobe a node that points to v. Each node v maintains a set parents(v) of all its parents.Each parent p 2 parents(v) is assigned a key equal to (serial#(w); b), where w is theother node (besides v) pointed to by p, and b equals 0 or 1 depending on whether theleft pointer of p points to v or not. To perform a Cons operation on two nodes, v andw, we search the set parents(v) using the key (serial#(w); 0) and return the matchingparent. If there is no matching parent, we create a new node p with pointers to v andw, set parents(p) to empty, insert p into parents(v) and parents(w), and return p. In acascade of Cons operations, we implement each Cons operation by searching in the setof parents of the node returned by the previous Cons operation.We represent each set parents(v) by a binary search tree and perform searches andinsertions on the tree using the Splay Algorithm2. A search operation is followed by a2The Splay Algorithm is described in Chapter 3, Section 3.1.1.
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4.3. THE ANALYSIS 79splay on the last-visited node during the search. A new element is inserted into the treeas follows. If the inserted element is larger than the current maximum element, insertit as the right child of the maximum element; this requires maintaining a pointer to therightmost node in the tree. Otherwise insert the element into the tree in the standardtop-down manner and then splay at the element. These two types of insertions are calledpassive and active, respectively. We implement passive insertions more e�ciently sincethey are more numerous than active insertions.4.3 The AnalysisThe following theorem summarizes the performance of the data structure for Consoperations.Theorem 4.1 The amortized cost of a cascade of f Cons operations equals O(f +logmc), where mc denotes the total number of cascades performed on S-expressions.The key idea behind the proof of this theorem is to bound the cost of operations ona parent set using a strong form of Sleator and Tarjan's Static Optimality Theorem [28].We focus on the graph induced by the S-expression nodes, write the static optimalityexpressions for all these nodes, and bound the sum of the static optimality expressionsover all the nodes, using the fact that S-expression nodes have at most two children (eventhough they might have unboundedly many parents).We state the lemmas used in proving the theorem. The following lemma uses thenotion of blocks in a binary tree introduced in Chapter 3, Section 3.2.1, and occursimplicitly in the work of Cole et al. [11].Lemma 4.1 Consider a binary search tree whose elements have been assigned arbitrarynonnegative weights. Suppose that the tree is partitioned into blocks so that each blockhas a positive weight (the weight of a block equals the total weight of all the elements init). Let n denote the number of elements in the tree and let nb denote the number ofblocks. The cost of a sequence of m splays performed on the roots of the blocks equalsO(m + n +Pmj=1 log(W=wj) +Pnbi=1 log(W= �wi)), where W = the total weight of all theelements, wj = the weight of the block of the jth accessed element, and �wi = the weightof the ith block of the tree.
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80 CHAPTER 4. TESTING SET EQUALITYProof. Assign potentials to the nodes of the tree as described by Cole et al. [11]in Section 2, \Global insertions", and analyze the splays using their analysis of globalinsertions3. Their analysis yields the following conclusions: the amortized cost of a splayon the root of a block with weight w equals O(1+ log(W=w)); the drop in potential overthe entire sequence equals O(Pnbi=1 log(W= �wi) + n). The result follows.The following lemma bounds the cost of the sequence of operations performed on asingle parent set and it is the key idea underlying the analysis.Lemma 4.2 Consider a sequence of insertions and searches performed on an (initiallyempty) binary search tree using splays. Letfi = the number of searches of element i,F = the total number of searches,na = the number of active insertions, andn = the total number of insertions.The cost of this sequence equals O(n+ na logna + F +Pfi�1 fi log(F=fi)).Proof. We modify the sequence by preinserting all the elements into the initial treeaccording to their order of arrival (without splaying). On this tree, we perform thesearches and simulate the insertions. Active insertions are simulated by splaying at thecorresponding elements and passive insertions are simply ignored. We obtain a sequenceof splays corresponding to active insertions and searches (active splays and hot splays,respectively). It su�ces to bound the cost of this sequence.We bound the cost of this sequence by partitioning the tree into blocks and applyingLemma 4.1. Partition the tree into blocks as follows. The elements accessed by activeand hot splays are, respectively, called active and hot. Every active or hot elementforms a singleton block. Each nonempty interval of nodes between consecutive singletonblocks forms a passive block. Choose an element from each passive block and call itthe block representative. Note that na = the number of active elements. The weight ofelement i is de�ned by:8>>><>>>: fi if the element is hotF=(na + 1) if the element is active but not hot0 if the element is in a passive blockbut not the representative3An account of this analysis can also be found in Cole [9], Section 4.
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4.3. THE ANALYSIS 81The representatives of na+1 of the passive blocks are each assigned a weight of F=(na+1);the representatives of the remaining passive blocks are placed in one-to-one correspon-dence with the set of hot elements and assigned the weights of their mates. The totalweight of the tree is at most 4F . Applying Lemma 4.1, the cost of the sequence of splaysequals O(na + F + n+ Xfi�1 fi log(4F=fi) + na log(4(na + 1)) +2(Xfi�1 log(4F=fi)) + (2na + 1) log(4(na + 1))) =O(n+ na log na + F + Xfi�1 fi log(F=fi)):Remark. The lemma is a strong form of Sleator and Tarjan's Static OptimalityTheorem [28]. The term static optimality comes from the expression Pi fi log(F=fi)which gives the weighted path length of the optimal static binary tree whose leaves haveweights f1; f2; . . . ; fn. Their theorem applies only to sequences of searches in which allthe elements of the tree are accessed at least once. The use of Cole et al.'s sharperanalysis [11] yielded our stronger lemma.The following graph inequality will help us to bound the sum of the static optimalityexpressions over the nodes of the S-expression graph, using the fact that the nodes ofthis graph have constant-bounded indegrees.Lemma 4.3 Consider a digraph G = (V;E) and consider a collection of walks in G.LetFe = the number of traversals of edge e in the walks,Fv = P(v;w)2E F(v;w), for any vertex v,Wv = the number of walks originating at vertex v, andidv = indegree(v) + 1.Then, X(v;w)2EF(v;w) log(Fv=F(v;w)) � Xv2V Fv log idv + XFv�1Wv logFv :Proof. Let �F(v;w) = F(v;w) �#walks with (v; w) as the last edge.X(v;w)2E F(v;w) log(Fv=F(v;w)) = XFv�1Fv logFv + X(v;w)2EF(v;w) log(1=F(v;w))
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82 CHAPTER 4. TESTING SET EQUALITY� XFv�1Wv logFv + X(x;v)2E �F(x;v) logFv + X(v;w)2E �F(v;w) log(1= �F(v;w))(x log(1=x) is decreasing in [1=e;1])= XFv�1Wv logFv + XFw�1 X(v;w)2E �F(v;w) log(Fw= �F(v;w))� XFv�1Wv logFv + Xw2V Fw log idw (entropy inequality).We are ready to prove the theorem.Proof of Theorem 4.1. Consider a sequence of mc cascades of Cons operations,comprising F Cons operations totally. The cost of a cascade of f Cons operations equalsO(f) plus the cost of operations performed on parent sets. During any cascade of Consoperations, there are at most two active insertions into parent sets. These insertions areperformed when the �rst node is created by the cascade; all subsequent insertions arepassive. Hence, out of at most 2F insertions into parent sets totally performed during thesequence of cascades, at most 2mc insertions are active insertions. Applying Lemma 4.2to the sequence of insertions and searches performed on each parent set and summingthe costs over all parent sets, we see that the total cost of parent set operations equalsO(F +mc logmc + Xnodes v Xi 2 parents(v)^ fi � 1 fi log(F (v)=fi));where F (v) denotes the total number of searches performed on parents(v) and fi denotesthe number of searches of element i among these. The double summation bounds thetotal cost of all searches performed on the parent sets. This summation can be boundedusing Lemma 4.3. The collection of nodes at the end of the sequence of cascades inducesa directed graph whose vertices are the S-expression nodes and whose edges go fromnodes to their parents. The indegree of each vertex in this graph is at most 2. For eachedge (v; w), de�ne F(v;w) = the number of searches of node w performed on parents(v).Delete all edges e such that Fe = 0. Applying Lemma 4.3 to the resulting graph, we seethat the summation is bounded by F log 3 +mc logmc. It follows that the cost of thesequence of cascades equals O(F +mc logmc). The theorem follows.
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4.4. DIRECTIONS FOR FURTHER WORK 834.4 Directions for Further WorkThe following open problems arise naturally in connection with this work:1. Is there a data structure for implementing Cons operations in constant amortizedtime and constant amortized space, in general?2. Prove (or disprove) that the problem of maintaining sets under the complete reper-toire of set operations has no e�cient solution. An e�cient solution is one thatimplements all set operations in time polylogarithmic in the number of updateoperations.3. The Sequence Equality-testing Problem [31] is to maintain a collection of sequencesfrom a �nite, ordered universe under equality-tests and under creations of new se-quences through insertions and deletions of elements. There exists a data structurethat performs equality-tests of sequences in constant time and updates sequencesin about pn time/space, where n denotes the length of the updated sequence.The problem can be solved in O(logm) time/space per update operation if eithersequences are repetition-free or randomization and a small error are permitted; mdenotes the number of update operations. The existence of a deterministic (or evenan error-free randomized) data structure that updates sequences in polylogarithmictime/space, in general, remains open.
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