Amortized Complexity of Data Structures

Rajamani Sundar

October 1991

A dissertation in the Department of Computer Science submitted to the faculty of
the Graduate School of Arts and Science in partial fulfillment of the requirements for

the degree of Doctor of Philosophy at New York University.

Approved

(Signed)

Ravi Boppana

Research Advisor

www.manharaa.com

(© Copyright by Rajamani Sundar 1991
All Rights Reserved

www.manharaa.com

Amortized Complexity of Data Structures

Rajamani Sundar

Advisor: Ravi Boppana

Abstract

This thesis investigates the amortized complexity of some fundamental data structure
problems and introduces interesting ideas for proving lower bounds on amortized com-

plexity and for performing amortized analysis. The problems are as follows:

e Dictionary Problem: A dictionary is a dynamic set that supports searches of ele-
ments and changes under insertions and deletions of elements. It is open whether
there exists a dictionary data structure that takes constant amortized time per
operation and uses space polynomial in the dictionary size. We prove that dictio-
nary operations require log-logarithmic amortized time under a multilevel hashing

model that is based on Yao’s cell probe model.

o Splay Algorithm’s Analysis: Splay is a simple, efficient algorithm for searching
binary search trees, devised by Sleator and Tarjan, that uses rotations to reorganize
the tree. Tarjan conjectured that Splay takes linear time to process deque operation
sequences on a binary tree and proved a special case of this conjecture called the
Scanning Theorem. We prove tight bounds on the maximum numbers of various
types of right rotations in a sequence of right rotations performed on a binary
tree. One of the lower bounds refutes a conjecture of Sleator. We apply the upper
bounds to obtain a nearly linear upper bound for Tarjan’s conjecture. We give two
new proofs of the Scanning Theorem, one of which is a potential-based proof that

solves a problem of Tarjan.

o Set Fquality Problem: The task of maintaining a dynamic collection of sets under
various operations arises in many applications. We devise a fast data structure
for maintaining sets under equality-tests and under creations of new sets through
insertions and deletions of elements. Equality-tests require constant time and set-

creations require logarithmic amortized time. This improves previous solutions.

www.manaraa.com

Acknowledgements

It is a pleasure to acknowledge the help of many people in performing the work of this

thesis.

I would like to thank my advisor Ravi Boppana for teaching me many useful research
skills and teaching/presentation skills. I learnt from him the importance of simple and
clear formulation of ideas, and about several useful ideas in Theoretical Computer Science
and Discrete Mathematics. The work on the Dictionary Problem owes a great deal to
the various things I learnt from him and to his help. He showed me the initial directions
to proceed along, he came up with fresh approaches to pursue whenever I failed, and he

kept encouraging me to succeed.

I would like to thank my co-advisor Richard Cole for initiating me into the area of
amortized analysis, for always being a source of inspiration, and for always giving me
kind attention and advice when I needed them. The work on the Deque Conjecture owes

greatly to the several fruitful discussions I had with him.

I would like to thank Mike Fredman, Bud Mishra, and Bob Tarjan for serving on my
thesis defense committee and for their role in this work. Mike Fredman and Bob Tarjan
supported and guided me during the summer of 1989 when I was a student under them
at Bellcore and at Bell labs, respectively. They were always sources of nice problems to
work on, and of inspiration and encouragement. The work on the Set Equality Problem
is part of a larger joint-work done with Bob Tarjan. Bud Mishra supported me during

the academic year 1988-89, and was always a source of encouragement and help.

I would like to thank the Courant Institute community for providing a great envi-

ronment for this work.

Finally, I would like to thank IBM Corporation for graciously supporting me during
the academic years 1989-91.

ii

www.manaraa.com

Contents

1 Introduction 1
1.1 Amortized Complexity L 1
1.2 Our Work o o 3

2 The Dictionary Problem 5
2.1 Introduction 5
2.2 Single-level Hashing Model o oL 9

2.2.1 Uniform Hash Functions and Worst-case Complexity 11
2.2.2 Nonuniform Hash Functions 12
2.2.3 Amortization Lo s 13
2.3 Multilevel Hashing Model 13
2.3.1 Partial Hashing Model 15
2.3.2 Adversary s 16
2.3.3 Two Random Sampling Lemmas 21
2.3.4 The Worst-case Lower Bound 27
2.3.5 Amortization L L L s 30

3 The Deque Conjecture 35

3.1 Introduction L 35
3.1.1 The Splay Algorithm and Its Conjectures 35
3.1.2 Terminology e 39

iii

www.manharaa.com

3.1.3 Previous Works e 41

3.1.4 Our Resultso 0 41

3.2 Counting Twists, Turns, and Cascades, 43
3.2.1 Upper Bounds 43

3.2.2 Lower Bounds 51

3.3 An Upper Bound for the Deque Conjecture 62
3.4 New Proofs of the Scanning Theorem, 65
3.4.1 A Potential-based Proof o o000, 66

3.4.2 An Inductive Proof o oo 68

4 Testing Set Equality 75
4.1 Introduction oL e 75
4.2 The Data Structure L e 78
4.3 The Analysis e 79
4.4 Directions for Further Worko oo o000 83
Bibliography 85

v

www.manharaa.com

Chapter 1

Introduction

1.1 Amortized Complexity

In many applications of data structures, the data structure is embedded within some
algorithm that performs successive operations on it. In these applications, we are inter-
ested only in the time taken by the data structure to process operation sequences as a
whole and not in the time spent on isolated operations. Amortized data structures are
data structures tailored to such applications: these data structures may perform poorly
on a few individual operations but perform very well on all operation sequences. The
natural performance measure for an amortized data structure is its amortized complezity,
defined to be the maximum cost of operation sequences performed on the data structure
as a function of the lengths of the sequences. Amortized data structures are appealing
because they dispense with complicated constraints and associated information present
in data structures that achieve a fast performance on all operations and they use simple
reorganizing heuristics, instead, to achieve a fast amortized performance. Some exam-
ples of these data structures are the compressed tree data structures for the Union-find

Problem [1,23,32], the Splay Tree [23,28,32], and the Pairing Heap [16].

Amortized data structures are simple to describe but their performance analysis is
often quite involved. Since operation sequences on these data structures are mixtures
of operations of varying costs that very finely interact with one another it is tricky to
accurately estimate their amortized complexity. Of the three amortized data structures
mentioned above only the first one has been analyzed thoroughly; even its analysis was

accomplished only several years after the data structure was originally conceived. The

www.manaraa.com

2 CHAPTER 1. INTRODUCTION

complete analysis of the other two is still open.

A useful framework for performing amortized analysis involves defining an appro-
priate potential function for the data structure [34]. In this framework, each state of
the data structure is assigned a real number called its potential. The amortized cost of
a data structure operation is defined to be the actual cost incurred by that operation
plus the increase in potential it causes through change of state. The total cost of an
operation sequence performed on the data structure equals the total amortized cost of
the operations in the sequence plus the decrease in potential from the initial state to the
state at the end of the operation sequence. Choosing a suitable potential function that

yields a sharp estimate on the amortized complexity is a task that demands ingenuity.

We illustrate the potential framework through a simple example. A priority queue
with attrition (PQA) is a dynamic set of real numbers supporting two operations:
DELETEMIN deletes and returns the smallest element of the set; INSERT(z) deletes all
elements of the set greater than z and adds z to the set. A PQA can be represented
by a sorted list of its elements. In this representation, DELETEMIN takes constant time,
and INSERT takes time proportional to the number of deleted elements. If we define the
potential of the data structure equal to the number of elements it contains then PQA

operations take constant amortized time; PQA operation sequences take linear time.

The notions of amortized complexity and amortized cost are usually used in a much
wider sense than defined above. Amortized complexity is usually a maximizing function
of several parameters of the operation sequences, instead of their length alone. The
amortized costs of operations are usually a set of functions of the operation sequence
parameters that, when added together, yield a good estimate of the amortized complex-
ity. For example, the compressed tree data structures for the Union-find Problem have
amortized complexity equal to O(n + ma(m + n,n)), and take constant time on UNION
operations and O(a(m + n,n)) amortized time on FIND operations, where a(m,n) is an
inverse function of the Ackerman function, and m and n respectively denote the total

number of FINDs and the total number of UNIONSs in the operation sequence [23,32].

Let us relate amortized complexity to other measures of data structure performance.
There exist data structure problems whose amortized complexities are lower than their
worst-case complexities; for instance, the Union-find Problem is solvable in nearly con-

stant amortized time per operation but requires nearly logarithmic worst-case time per

www.manaraa.com

1.2. OUR WORK 3

operation [7,15,32]. There probably exist problems whose randomized (or average-case)
complexities are lower than their amortized complexities, but this is yet to be proven; for
instance, the Dictionary Problem and certain other problems that involve testing equal-
ity of objects appear to be good candidates for this class. The amortized complexity of
a dynamic data structure problem is often intimately related to the complexity of its
static version via transformations of solutions/adversaries of one problem into another

[6,39).

An appropriate model for proving lower bounds on the amortized complexity of a
data structure problem is Yao’s cell probe model [38]. This model abstracts out the
arithmetic and indexing capabilities of random access machines without ignoring their
word-size limitations. The model has a memory consisting of an array of b-bit locations.
Data structure operations are performed in a series of memory probes in which the next
probe location is always computed as a general function of the values so far read. In this
model, Fredman and Saks [15] proved tight lower bounds on the amortized complexity
of many problems, including the Union-find Problem. The only other interesting lower
bound known in this model is for a static data structure problem, due to Ajtai [3]. The
complexity of many other problems, notably, the Dictionary Problem and the Priority

Queue Problem, remains unexplored.

This completes our introduction to amortized complexity. Further information on

this subject can be found in [23,32,34].

1.2 Our Work

This thesis investigates the amortized complexity of some fundamental data structure
problems. We introduce interesting ideas for proving lower bounds on amortized com-
plexity and for performing amortized analysis that enable progress towards resolving

some open questions. The problems studied are as follows.

In Chapter 2, we study the amortized complexity of the Dictionary Problem. A dic-
tionary is a dynamic set that supports searches, insertions, and deletions of elements. It
is an open problem whether a dictionary can be maintained in constant amortized time
per operation using space polynomial in the dictionary size; we denote the dictionary

size by n. While hashing schemes solve the problem in constant amortized time per oper-

www.manaraa.com

4 CHAPTER 1. INTRODUCTION

ation on the average or using randomness, the best deterministic solution (uses hashing
and) takes O(logn/loglogn) amortized time per operation. We study the deterministic
complexity of the dictionary problem under a multilevel hashing model that is based on
Yao’s cell probe model, and prove that dictionary operations require 2(loglogn) amor-
tized time in this model. Our model encompasses many known solutions to the dictionary
problem, and our result is the first nontrivial lower bound for the problem in a reason-
ably general model that takes into account the limited wordsize of memory locations
and realistically measures the cost of update operations. This lower bound separates the

deterministic and randomized complexities of the problem under this model.

In Chapter 3, we study a problem arising in the analysis of Splay, a rotation-based al-
gorithm for searching binary search trees that was devised by Sleator and Tarjan. Tarjan
proved that Splay takes linear time to scan the nodes of a binary tree in symmetric order;
this result is called the Scanning Theorem. More generally, he conjectured that Splay
takes linear time to process deque operation sequences on a binary tree; this conjecture is
called the Deque Conjecture. We prove that Splay takes linear-times-inverse-Ackerman
time to process deque operation sequences. In the process, we obtain tight bounds on
some interesting combinatorial problems involving rotation sequences on binary trees.
These problems arose from studying a conjecture of Sleator that we refute. We give two
new proofs of the Scanning Theorem. One proof is a potential-based proof; Tarjan had

originally posed the problem of finding such a proof. The other proof uses induction.

In Chapter 4, we study the problem of maintaining a dynamic collection of sets under
equality-tests of two sets and under creations of new sets through insertions and deletions
of elements. We devise a data structure that takes constant time on equality-tests and
logarithmic amortized time on set-creations. The data structure derandomizes a previous
randomized data structure, due to Pugh and Teitelbaum, that took logarithmic expected

amortized time on set-creations.

Some of our work has been published before. The work on the Deque Conjecture was
reported in [30]. The work on the Set Equality Problem was reported in a joint-paper
with Robert E. Tarjan [31] that also dealt with other related problems.

www.manaraa.com

Chapter 2

The Dictionary Problem

The Dictionary Problem is a classical data structure problem arising in many applications
such as symbol table management in compilers and language processors. The problem
is to maintain a dynamic set under the operations of search, insertion, and deletion of
elements. The problem can be solved in constant time per operation using a bit vector
that has a separate bit for each element of the universe indicating its prescence in the
set. This simple solution is unsatisfactory since it uses space proportional to the universe
size and the dictionary is usually very small compared to the universe. Does there exist a

constant-amortized-time solution that uses only space polynomial in the dictionary size?

In this chapter, we study the amortized complexity of the dictionary problem under
a multilevel hashing model that is based on Yao’s cell probe model, and prove that

dictionary operations require log-logarithmic amortized time in this model.

2.1 Introduction

The Dictionary Problem is to maintain a dynamic set, called a dictionary, over a finite,

ordered universe U under the following operations:

e SEARCH(z): Determine whether element z is in the dictionary; if so, find a memory

location storing z.
e INSERT(z): Add element z to the dictionary.

e DELETE(z): Remove element & from the dictionary.

5

www.manaraa.com

6 CHAPTER 2. THE DICTIONARY PROBLEM

The dictionary is initially the empty set. We would like to know how fast the problem
can be solved using only space polynomial in the dictionary size (denoted by n) on a
RAM with (log|U])-bit memory words. Here we are restricting the space used in terms
of the dictionary size in order to exclude the trivial bit vector solution and a family of
its generalizations, due to Willard [37], that process dictionary operations in constant

time and use space depending on the size of the universe.

The Dictionary Problem has been extensively studied and has a rich variety of solu-

tions.

Balanced search trees solve the problem in O(logn) time per operation and use O(n)
space [1,21,23,32]. Self-adjusting search trees such as Sleator and Tarjan’s Splay Tree
[28] and Galperin and Rivest’s Scapegoat Tree [18] take O(logn) amortized time per
operation. There is no hope of improving the log n behaviour of search trees since they

use only comparisons to perform searches.

Hashing schemes solve the problem in constant expected time per operation and
use O(n) space. Uniform hashing performs dictionary operations in constant expected
time when the operations are randomly chosen from a uniform distribution [21,1]; the
space used is O(n). Universal hashing is an improved randomized hashing scheme that
performs searches in constant expected time and performs updates in constant expected
amortized time [8]; the expectation, here, is over the random hash functions chosen
by the algorithm and the bounds apply to all possible operation sequences. Dynamic
perfect hashing [13] (see also [2,14]) is a further improvement that performs searches in
constant worst-case time and performs updates in constant expected amortized time.
All of the above hashing schemes fall under the general category of multilevel hashing
schemes. Roughly speaking, a multilevel hashing scheme consists of a hierarchically
organized system of hash functions that successively partition the dictionary into finer
pieces until all elements in the dictionary have been separated plus an algorithm to

update the configuration after each dictionary operation.

The fastest deterministic solution to the problem, at present, is a multilevel hashing
scheme, due to Fredman and Willard [17], that takes O(logn/loglogn) amortized time

per operation and uses O(n) space.

It has been possible to prove nonconstant lower bounds for the problem on certain de-

terministic hashing models. Dietzfelbinger et al. [13] showed a tight bound of @(log n) on

www.manaraa.com

2.1. INTRODUCTION 7

the amortized complexity of dictionary operations under a wordsize-independent multi-
level hashing model that does not include search trees. Mehlhorn et al. [24] strengthened
this model so that it includes search trees and showed that dictionary operations have
O(loglog n) amortized complexity under their model. These models assume that mem-
ory locations have an unbounded wordsize and overestimate the costs of operations; this
simplifies the task of proving lower bounds but the models are not realistic. If memory
locations have a sufficiently large wordsize, the problem is solvable in constant time per
operation (Paul and Simon [25]; Ajtai et al. [4]). When memory locations can only rep-
resent a single element of the universe, however, the best available solution is Fredman

and Willard’s O(logn/ loglog n)-time solution [17].

We prove a nonconstant lower bound for the Dictionary Problem under a multilevel
hashing model, based on Yao’s cell probe model, that takes into account the limited

wordsize of memory locations and realistically measures the costs of operations.

We define a generic multilevel hashing model for solving the Dictionary Problem
from which various lower bound models for the problem can be derived by specifying
suitable cost measures for the operations. The model has a vertically organized memory
that consists of a root location at level 1 and an array of at most m locations at level 1,
for each i > 2. Memory locations have b bits each, for some b > log |U|. Each memory
location stores some ¢ different elements of the universe plus a (b — clog |U])-bit value
that guides search operations; here the number of elements stored at a location varies
over time, and is not constant. A search operation locates an element in memory by
performing a sequence of memory probes: the first probe of the sequence always reads
the root location and the ¢-th probe, for 2 > 2, reads a location at level ¢ that is com-
puted as a general function of the sequence of ¢ — 1 values so far read and the element
being searched. The operation either locates the element in some location after a series
of probes or concludes that the element is not in the dictionary after a series of unsuc-
cessful probes. A search operation finally replaces the current memory configuration by
a new configuration, representing the same dictionary, by computing a general function
of the current configuration. An update operation simply replaces the current memory
configuration by a new configuration that represents the new dictionary by computing a

general function of the current configuration.

www.manaraa.com

8 CHAPTER 2. THE DICTIONARY PROBLEM

We define a lower bound model for the problem by imposing a measure of operation
costs on the generic model. The Hamming cost of an operation is defined as the maximum
number of locations at any level whose contents change due to the operation. The cost
of a search operation is defined as the number of read probes performed by the operation
(called the search cost of the operation) plus the Hamming cost of the operation. The
cost of an update operation is defined as its Hamming cost. When this cost measure
is imposed on the generic model we get a lower bound model called the Hamming cost

model.

We prove our lower bound in the following model that has a different cost measure
from the Hamming cost model. The search path of an element z of U in a memory
configuration C' is defined as the sequence of locations probed by a search operation on
x performed in configuration C'. We say that an operation refreshes a memory location
[if there is some element z in the final dictionary such that [lies on the search path
of z after the operation but [did not lie on the search path of x before the operation.
The refresh cost of an operation is defined as the maximum number of locations at any
level that get refreshed by the operation. Define the cost of an operation as the sum of
the search cost and the refresh cost of the operation. The lower bound model with this
cost measure is called the refresh cost model. The difference between this model and
the Hamming cost model is that the refresh cost measure is sensitive to locations that
participate in rerouting the search paths of dictionary elements during an operation,
on the other hand, the Hamming cost measure is sensitive to locations whose contents

change.

A nonconstant lower bound for the Dictionary Problem in the Hamming cost model
would translate into a similar lower bound for the problem in the cell probe model. We
believe that such a lower bound exists, but we can only prove a lower bound under
the refresh cost model. The refresh cost model seems to be incomparable in power to
the cell probe model and to the Hamming cost model. The justification for the refresh
cost model is that, in realistic hashing schemes, an operation might have to read, and,
if necessary, modify, the locations it refreshes in order to correctly reroute the search
paths of dictionary elements. The refresh cost model encompasses many of the known
solutions to the dictionary problem, but not all of them; for instance, the model includes

B-trees, red-black trees, and various hashing schemes, but the class of rotations-based

www.manaraa.com

2.2. SINGLE-LEVEL HASHING MODEL 9

search trees is not included.

Our lower bound is given by:

Theorem 2.1 Consider the refresh cost multilevel hashing model with at most m mem-
ory locations per level, a universe U, and a wordsize b. Let n be a positive integer

loglogn Consider dictionary operation sequences during which the

satisfying |U| > m
mazimum dictionary size is n. Under this model, the amortized complexity of dictionary

operations equals Q(log(logn/logh)).

loglogn7 m = poly(n), and b = log |U|7 the theorem

In a typical situation where |U| = m
yields a lower bound of Q(loglogn) on the amortized complexity of dictionary oper-
ations. This lower bound separates the deterministic and randomized complexities of
hashing schemes in the refresh cost model, since this model encompasses randomized
hashing schemes like universal hashing [8] and dynamic perfect hashing [13] that process

dictionary operations in constant randomized amortized time.

The proof technique of the theorem can be used to show that single-level hashing
schemes in the Hamming cost model require (n®) amortized time to process dictionary
operations, for some constant a. We hope that the proof technique will be helpful in
showing a general nonconstant lower bound for the dictionary problem in the Hamming

cost model.

The chapter is organized as follows. In Section 2.2, we introduce the basic ideas
needed to prove Theorem 2.1 by proving a nonconstant lower bound under the simpler

model of single-level hashing. In Section 2.3, we prove the theorem.

2.2 Single-level Hashing Model

In this section, we prove a nearly linear lower bound for the Dictionary Problem under

the refresh cost single-level hashing model.

We define the lower bound model. The model consists of an array of m locations each
capable of storing an element of U, a family of at most 2° hash functions from U to the
array, and a b-bit root location storing a hash function from the family. The root hash
function is always chosen so that it sends the elements of the dictionary into different

locations, and collisions of elements are forbidden; in general, when a hash function sends

www.manaraa.com

10 CHAPTER 2. THE DICTIONARY PROBLEM

the elements of a set into distinct locations it is called a perfect hash function [14] for the
set and it is said to shatter the set. Search operations are performed in two probes: the
first probe reads the hash function from the root location; the second probe checks if the
element is present in the array location where it is sent by the hash function. An update
operation can change the root hash function and can write into some array locations in
order to appropriately relocate the dictionary elements. The cost of a search operation
is 2 units. The cost of an update operation is its refresh cost, which equals the number

of dictionary elements that are relocated during the operation.

The lower bound for single-level hashing is given by:

Theorem 2.2 Consider the refresh cost single-level hashing model with an array of m
memory locations, a universe U, and a b-bit root location. Assume that |U| > 2m.
Consider dictionary operation sequences during which the maximum dictionary size is
at most n, where n < m. Under this model, the amortized complexity of dictionary

operations equals Q(n/b).

A typical situation to apply this theorem is when b = log |U| and m and |U| are polyno-
mial in n. Under these assumptions, the theorem yields a lower bound of Q(n/logn) on

the amortized complexity of dictionary operations under the single-level hashing model.

The main idea behind the proof of the theorem is an adversary who keeps creating
random collisions in U. Any hashing scheme with a small hash functions family can not
succeed against this adversary. The proof uses the following sampling lemma, due to

Hoeffding [20], that a random sample closely behaves like the whole population.

Lemma 2.1 (Binary Sampling Lemma) Letk > 1 and let0 < f < a < 1. Consider
a population of at least k elements of which some a-fraction of the elements are colored
red. A random k-subset of the population has more than Bk red elements with probability

at least (1 — e~k where

o (a=p)?/2a(l-a)) ifa-p<l-a
*F = 2(a—B)? otherwise.
Let us prove the theorem. Denote the amortized cost per update operation incurred

Q(n/w)

by a hashing scheme by w. We prove that e hash functions are needed by the

www.manaraa.com

2.2. SINGLE-LEVEL HASHING MODEL 11

hashing scheme in order to successfully process all sequences of O(n) insertions. This
would imply the theorem. The proof of this result is organized in a series of steps.
A hash function is called uniform if it sends the same number of elements into each
location. In Section 2.2.1, we prove the result for the case when the hash functions used
by the hashing scheme are all uniform and the update cost is bounded in the worst-
case. In Section 2.2.2, we handle nonuniform hash functions. In Section 2.2.3, we handle

amortized update costs.

2.2.1 Uniform Hash Functions and Worst-case Complexity

In this section, we prove that any single-level hashing scheme in the refresh cost model
that uses only uniform hash functions and has worst-case update cost w needs at least

¢4/) hash functions in order to handle all sequences of O(n) insertions.

The adversary performs two batches of insertions: a large batch followed by a small
batch. The large batch is a random n-subset of U. Let h denote the hash function used
after the large batch; h is a random variable. The small batch is constructed as follows:
Randomly select & = n/cw locations, where ¢ is a constant. For each selected location
pick a random pair of elements of U that h sends into that location. The small batch
is the union of these pairs. Since we assumed that |U| > 2m and that h is uniform, h

sends at least two elements of U into each location.

The following lemma gives the lower bound on the size of the hash functions family.

Lemma 2.2 Any hashing scheme requires e2%) hash functions in order to succeed against

the adversary.

The idea behind the proof of this lemma is that any fixed pair of hash functions (A, g)
that are respectively used after the two batches has a low probability of success against
the adversary. For if h and ¢ are sufficiently similar then ¢ can not shatter the small
batch. On the other hand if h and g are sufficiently dissimilar then too many elements

in the large batch will change locations during the small batch.

Proof of Lemma 2.2. Consider a pair of hash functions (h, ¢) that are respectively
used after the two batches. We compute the probability of success of the hashing scheme
against the adversary using this pair of hash functions. Define §(h,g) = the number of

elements of U in which h and g differ. Two cases have to be considered:

www.manaraa.com

12 CHAPTER 2. THE DICTIONARY PROBLEM

Case 1. 6(h,g) > |U|/8: By the Binary Sampling Lemma, the large batch has more
than n/16 elements that differ in A and g with probability at least (1 — e™“1/8.1/16™),
Thus the update cost incurred by (h,g) during the small batch exceeds n/16 with this
probability. Setting & = n/32w, the maximum update cost allowed during the small
batch equals n/16. Hence Pr[(h, g) succeeds] < e~ 1/81/167,

Case 2. 6(h,g) < |U|/8: A location is called similar if g sends into that location
greater than (1/2)-fraction of the elements that h sends into it. At least (3/4)-fraction
of the locations are similar locations, since h and g¢ differ in at most (1/8)-fraction of U.
By the Binary Sampling Lemma, the random set of k locations selected during the small

batch contains more than k/2 similar locations with probability at least (1 — e~c/41/2%),

Consider a set of k locations, comprising at least k/2 similar locations, that are used
to construct the small batch. ¢ shatters a random pair of elements sent by h into a
similar location with probability at most 3/4. Hence ¢ shatters a random small batch

constructed using the above locations with probability at most (3/4)%/2.

Combining the above calculations, Pr[(h, g) succeeds] < e~/41/2% 4 (3/4)/2,

We are ready to compute the constants.

cisajte = 1/565 e374172 = 1/6; (1/2)In(4/3) > 1/7.

For sufficiently large k, the success probability of (h, ¢g) is at most e 58 Tt follows that at

k/16

least e hash functions are needed by the hashing scheme in order to succeed against

the adversary. O

2.2.2 Nonuniform Hash Functions

In this section, we extend the lower bound of the previous section to families of nonuni-

form hash functions.

The adversary once again inserts a large batch which is a random n-subset of U and
then inserts a small batch. The small batch is constructed based on the hash function
h that is used by the hashing scheme after the large batch. A multiple location of h is a
location into which h sends two or more elements of UU. Focus on the subuniverse U of
elements of U that h sends into its multiple locations. Select a random k-subset of U,
for k = n/cw. For each element of the subset select a random element of U that collides

with it under h. The small batch consists of the subset and the elements selected.

www.manaraa.com

2.3. MULTILEVEL HASHING MODEL 13

Let us see why Lemma 2.2 still holds for this adversary. Once again the idea is to
show that any fixed pair of hash functions (h, ¢) has a low probability of success. The
case when 6(h,g) > |U|/8 is handled as before. Consider the case 6(h,g) < |U|/8. Since
|U| > |U|/2, h and ¢ differ in at most (1/4)-fraction of U/. An element of U that is
sent by both h and ¢ into a similar location is called a similar element. At least (1/4)-
fraction of U are similar elements. By the Binary Sampling Lemma, we can expect at
least k/8 elements of the k-subset from which the small batch is constructed to be similar
elements. Now if two of these similar elements collide under h then ¢ fails to shatter the
small batch. So suppose that h and ¢ send all the similar elements of the small batch
into different locations. In this case, as in the previous section, it is easy to see that g
fails to shatter the small batch with probability greater than (1/2)*/%. This completes
the second case and the proof that (%) hash functions are needed to succeed against

the adversary.

2.2.3 Amortization

In this section, we incorporate amortization into the previous section’s argument. Let
w denote the amortized cost per update operation incurred by the hashing scheme.
The adversary of the previous section is modified by performing a greedy sequence of
insertions between the two batches. Immediately after the large batch, the adversary
performs a maximal sequence of insertions ¢ such that ¢ incurs an update cost of more
than 2w|o|. Then the small batch is performed as before based on the hash function h
used after 0. Observe that || is at most n, so only O(n) insertions are totally performed.
The maximality of o ensures that the total update cost incurred during the small batch
is at most 4wk. Hence we can apply the argument of the previous section to obtain a

lower bound on the hash functions family.

2.3 Multilevel Hashing Model

In this section, we prove a log-logarithmic lower bound for the Dictionary Problem under

the refresh cost multilevel hashing model.

The main idea behind the proof is a randomized adversary who alternately performs

greedy searches of the dictionary elements and creates random collisions at the various

www.manaraa.com

14 CHAPTER 2. THE DICTIONARY PROBLEM

levels of the multilevel hashing scheme, descending the levels of the scheme. The colli-
sions force the scheme to either incur a large cost on searches or incur a large cost in
compressing the dictionary to few levels. The collisions are created in batches of inser-
tions. Fach batch is constructed by selecting a set of locations from the first ¢ levels, by
focusing on the subuniverse of elements of U/ whose search paths involve just these loca-
tions during the first ¢ probes, and by picking a random subset from the subuniverse of
appropriate size; the subset is always chosen to be several times larger than the number

of selected locations in order to create collisions.

We sketch the lower bound proof. Let us confine ourselves to worst-case complexity
since amortized complexity can be easily handled, as in the single-level hashing lower
bound, by appropriately performing greedy searches and greedy insertions during the
adversary sequence. The adversary is defined recursively on levels, and the proof has
an inductive structure that is reminiscent of a previous lower bound for a static data
structure problem in the cell probe model, due to Ajtai [3]. In order to carry out the
induction, we need to prove a stronger result that applies to a more general hashing
model, called the partial hashing model. In a partial hashing scheme, each value of
the root location determines a working subuniverse of U on which the scheme supports
dictionary operations. The lower bound applies to partial hashing schemes that work,
occasionally, on a dense subuniverse of U; we show that such schemes fail, almost surely,

against the adversary.

The main feature of the proof is the handling of nonuniform root hash functions. The
value stored at the root location of the hashing scheme defines a partial hash function
which is essentially the second probe function used by the scheme to perform searches.
We say that this hash function is narrow if it sends a constant fraction of the universe
into a small set of level-2 locations; otherwise the hash function is said to be wide.
The adversary first recursively performs a narrow phase of insertion batches in U that
force the scheme to use narrow hash functions and then recursively performs a wide
phase of much smaller insertion batches within a random subuniverse U of U. The wide
phase is not always performed; it is performed only if the narrow phase gets prematurely
truncated because the hashing scheme has stopped using narrow hash functions. The
adversary consists of two different phases because the hashing scheme behaves differently

depending on whether it mostly uses narrow hash functions or it mostly uses wide hash

www.manaraa.com

2.3. MULTILEVEL HASHING MODEL 15

functions and two phases are needed to fool all hashing schemes. We show that the
probability of success of the hashing scheme through the completion of either of the
phases is small. We analyze the narrow phase using induction; we analyze the wide
phase by showing that fixed sequences of root hash functions used during this phase

have a low success probability, using some random sampling lemmas and induction.

The proof of the lower bound is organized as follows. In Section 2.3.1, we describe
the partial hashing model. In Section 2.3.2, we describe the adversary used for proving a
lower bound on worst-case complexity. In Section 2.3.3, we state and prove two technical
random sampling lemmas needed to analyze the wide phase. In Section 2.3.4, we prove

the worst-case lower bound. In Section 2.3.5, we handle amortized complexity.

2.3.1 Partial Hashing Model

In this section, we describe the partial hashing model.

A partial hashing scheme is a hashing scheme that processes dictionary operations
in a tower of universes Uy D Uy D --- D Ug. Up is called the working universe of the
scheme. The scheme has a vertically organized memory consisting of a (Wb)-bit root
location and an infinite word-size advice location at level-1, and an array of at most m
b-bit locations at each level i > 2; we require that b > log|Uy| so that a location can
store any element of the universes. Each possible value v of the root location defines a
tower of subuniverses 51(v) 2 S3(v) D -+ D Sk(v) such that S;(v) C U; for all o. Si(v)
is called the working subuniverse corresponding to value v. A search operation starts
by probing the root location; if the element being searched is in the current working
subuniverse, then the search proceeds downwards as in the standard multilevel hashing
model; if the element is not in the current working subuniverse, then the search operation
probes the advice location and continues downwards in the standard fashion. An update
operation changes the memory configuration; a search operation can also change the
memory configuration. The search cost of an operation is defined as the number of read
probes performed by the operation, not counting probes on the advice location. The
refresh cost of an operation is a suitably defined number that is at least the maximum
number of locations at any level that get refreshed by the operation. The cost of an
operation is defined to be the sum of its search cost and its refresh cost. This completes

the description of the model.

www.manaraa.com

16 CHAPTER 2. THE DICTIONARY PROBLEM

In order to prove a lower bound for partial hashing schemes, we have to require these
schemes to use dense subuniverses, at least occasionally. The density of a set S C T in
T equals |S|/|T|; S is said to be a-dense in T if S has a density of at least o in T'. Let
a = (ay,az,...,a;) be a vector of values in the interval [0, 1], let e be a positive integer,
and let H be a partial hashing scheme. A configuration C' of H is said to be a-dense
if the subuniverses S1(v) D S2(v) D -+ D Si(v) corresponding to configuration C' have
respective densities > a1, g, ..., ap in universes Uy, Us, ..., Ug. A configuration C' of H
is said to be (@, e)-good if there is an extension sequence of at most e insertions in Uq,
starting from C', after which H is in a a-dense configuration; otherwise ' is said to be
(a,e)-bad. H is said to be (a,e)-good if H always uses (@, e)-good configurations. Our

lower bound applies to partial hashing schemes that are (&, €)-good.

2.3.2 Adversary

In this section, we describe a randomized adversary for proving a lower bound on the

worst-case complexity of good partial hashing schemes.

We define an adversary A7 |, , against a partial hashing scheme H with a tower of
universes Uy D Uy D --- D Uy, and a working universe U = Uy, that has been partitioned
into n equal-sized blocks; here @ = (aq,as,...,a). The adversary is tailored against
(@, e)-good partial hashing schemes with worst-case search cost r and worst-case update
cost w, but it is defined against any partial hashing scheme; we will define e later.
The adversary either performs a complete sequence of O(n) insertions on the initial
dictionary leaving H in a a-dense configuration or performs a truncated sequence of
operations which could not be completed because the hashing scheme has entered an

(@, e)-bad configuration.

We need some definitions. Let p be a positive integer, let € € [0, 1], and let h be a
partial hash function from a universe U to an array of locations. The domain of & is
denoted by dom(h). A random (¢,p)-sample from h is a random subset R of dom(h)
constructed as follows. First delete from dom(h) all the elements that go into locations
where h sends less than an (ep)-fraction of U; then pick a random p-subset S from
dom(h); for each location into which h sends k elements of .5, pick a random subset with
density ¢k in U that h sends into that location; R is the union of the subsets picked

from the various locations. A partial hash function is said to be (a, W)-narrow, for some

www.manaraa.com

2.3. MULTILEVEL HASHING MODEL 17

a € [0, 1] and some positive integer W, if it sends at least an a-fraction of U into some
set of W locations; otherwise the hash function is said to be («, W)-wide. A partial hash
function is said to be §-biased, for some g € [0, 1], if it sends at most a §-fraction of U
into any single location. We can prune a partial hash function and make it -biased, for

any given (3 € [0, 1], by deleting sufficiently many elements from its domain.

We are ready to define the adversary. The adversary first inserts a random n-subset
of U that is formed by picking a random element from each block of U (called the first
batch) and then performs a phase of insertions, called the tail phase. The tail phase is

defined recursively on r:

Basis. r = 1: If there exists an extension sequence & consisting of at most ¢ = n in-
sertions in Uy taking H to a a-dense configuration, perform ¢ and announce completion;

otherwise H is in a (@, e)-bad configuration, so announce truncation.

Induction Step. r > 2: We first perform a recursive subphase, called the narrow
phase; if this phase gets truncated we perform another recursive subphase, called the
wide phase. The adversary announces completion if one of the two phases completes;

otherwise the adversary announces truncation. The two phases are performed as follows:

Narrow Phase: Let Wy be a suitably defined positive integer. We construct a new
hashing scheme [y from [, having a tower of universes Uy 2 Uy 2 --- D Uy, = Ug4q, by
collapsing the top two levels of H into a single level. Each possible value stored at the
root location of H defines a partial hash function from Uy to the set of level-2 locations
which equals the second probe function used by search operations when that value is
stored at the root. We rank the level-2 locations of H according to each partial hash
function h used by H at its root location as follows. The i-th location of a partial hash
function h from a domain D C U to the set of level-2 locations is defined to be the
location into which h sends the i-th largest subset of D; we resolve ties in favor of the
location with the smallest index. The root location of Hy, at any time, consists of the
root location of H juxtaposed with the first 1 /2 level-2 locations of the current root
partial hash function (this set of locations is denoted by L;); the advice location of Hy
consists of the advice location of H juxtaposed with the remaining level-2 locations of
H; the i-th level of Hy, for i > 2, coincides with the (¢ + 1)-st level of H. The working
subuniverse of Hy, at any time, is the subset of the working subuniverse of H that the

root hash function of H maps into the set of locations Lq; the tower of subuniverses of

www.manaraa.com

18 CHAPTER 2. THE DICTIONARY PROBLEM

Hy, at any time, consists of the tower of subuniverses of H followed by Hy’s working
subuniverse. Operations are performed by H; by simulating the behaviour of H. The
search cost of an operation on Hy is defined in the usual way. The refresh cost of an
operation on Hy is defined equal to the refresh cost of that operation on H. Notice that
this definition of refresh cost is more liberal than the usual definition of the refresh cost

as the maximum number of locations at any level that get refreshed.

The narrow phase of the adversary A7 |, against H is recursively defined to be the

tail phase of the adversary A%:,L,w,b against Hy, starting from the same configuration as
H’s configuration prior to the narrow phase; here 4 = (aq,aq,. .., ok, ax/2). The nar-

row phase completes if the recursive adversary announces completion; otherwise the nar-
row phase is truncated. The narrow phase always forces H to use (ay/2, W;/2)-narrow
root hash functions; if the phase gets truncated then H will always use (ay/2, W;/2)-
wide root hash functions in any a-dense configuration during the next e; insertions in

Uy; we will specify ey later.

Wide Phase: The wide phase consists of two subphases: the first phase incrementally
constructs a random subuniverse Ugyq C U and alternately performs random insertion
batches in Uyy; and extension batches in Uy; the second phase recursively performs
further random insertion batches in Uyyq and extension batches in U;. The wide phase
completes either if the second phase completes or if the second phase gets truncated but
H is in an (@, e)-good configuration following the phase (in the latter case, the wide
phase is completed by performing a suitable extension sequence in Uy that takes H to a
a-dense configuration); otherwise the wide phase is truncated. We can prune every root
hash function used by H in a a-dense configuration during the wide phase by deleting
from its domain a subset of density at most (a;/2) in U and make it (ay/Wi)-biased
since these hash functions are (ay /2, W1/2)-wide. Let o = a, let W3 and eg be suitably
chosen positive integers, and let € = (a?/64W,ym). The two subphases are performed as

follows:

First Phase: We maintain a pair of sets /' and U? C U! that are initially the empty

sets and repeat the following step as many times as possible:

Step: If there is an extension sequence ¢ of at most e; insertions in Uy following
which H is in a a-dense configuration and H’s pruned root hash function has a domain

D such that D\U! is (a/4)-dense in U, then perform & and continue the step; otherwise

www.manaraa.com

2.3. MULTILEVEL HASHING MODEL 19

terminate the step. This ensures that, in any a-dense configuration of H during the next
eg insertions in Uy following the first phase, the domain of H’s pruned root hash function
will always intersect U' in a (a/4)-dense subset of UU. Let h be the pruned root hash
function used by H following &, and let D’ be a domain of density («/4) in U that is
disjoint to U1 and on which & is defined. We insert D’ into U!, pick a random (e, Wo/2)-
sample U2 from h|ps and insert it into Uz, and, finally, insert a random (ey/8)-subset
S of U? into the dictionary. The set S is constructed by uniformly partitioning U? into
(aez/8) equal blocks in any way and picking a random element from each block. This

completes the description of the step.

Second Phase: Let Uryy = the value of set U? at the end of the first phase, let L,
= the set of level-2 locations from which the samples U/ were constructed during the
steps of the first phase, and let n’ = the total number of random elements inserted into
the dictionary during the first phase. The second phase is performed only if Ugiq # ¢;
otherwise the second phase is truncated. We construct a new hashing scheme Hy having
a tower of universes Uy D Uy D --- D U O Ugyq by collapsing the top two levels of I,
by appending the set of locations Ly to the root location of H, and by appending the
remaining level-2 locations to the advice location of H. The working subuniverse of H,
at any time, is the subset of U4y that H’s pruned root hash function sends into the
locations of L,. Operations on H, are performed by simulating H’s behaviour; the costs

of operations on Hy are defined analogous to Hj.

The second phase is recursively defined as the tail phase of adversary A%;;, . against

Hy; here 33 = (a1, ag, ..., g, 01 /32).
This essentially completes the definition of the tail phase and of the adversary.

We now mention some details that had been omitted in the definition of the wide
phase. During the wide phase, often, the root hash function has to be restricted to a
subdomain such as when pruning a root hash function or when choosing an appropriate
subdomain D’ of a pruned root hash function A during a step of the first phase. These
restrictions are performed in a unigue way. We prune every root hash function in a
unique way depending only on the hash function and on the bias 5. We choose domain
D’ during a step of the first phase in a unique way depending only on the pruned hash
function h and U!. In the construction of the random subsets S C U? during the first

phase, we uniformly partition U? in a unique way depending only on its value.

www.manaraa.com

20 CHAPTER 2. THE DICTIONARY PROBLEM

The size of the universe reduces by a factor of 128m/a? when carrying out the
recursion during the wide phase. We need |U| > (32)"(128m)"n/a?" to ensure that the

universe has at least n elements by the time the adversary reaches the r-th level.

The parameters e, ey, ez, Wy, and Wy are defined as functions of the adversary

parameters r, a, and n using the following recurrence relations:

e 1)
ef(a,n) = € Ha/2,n) (2.2)
es(a,n) = aWi(a,n)/(cow) (2.3)
W{(a,n) = W' l(a/2,n) (2.4)
; B Wi(a,n)a/(cib) ifr>2
Wia,n) = { an/cib otherwise (2:5)
Wi(a,n) = W Ha/32,aeh(a,n)/8) (2.6)

The constants c¢g and ¢ used in these recurrences will be specified later. We obtain a

recurrence involving W alone by eliminating the other parameters:

8cow .
T8 ifr>2

an/erb otherwise

W1 (/32,220 (aj2im)
W’ (a,n) =

This recurrence has the following solution:

a2T+1—3

W"(a,n)=n

(64)(r=1)(5r=8)/22"F 1 =r=2p2r—1 (g qpy)2" =1

Back-substituting this solution into the above recurrences, we find the values of param-

eters e, e1, ea, Wy, and Wy to be approximately n(a/wb)?’.

The adversary definition requires all the parameters to be at least 1. We need n to

be sufficiently large (n ~ (wb/a)?") to guarantee this.

We state some useful facts about the adversary. These facts can be proved using the

definition of the adversary and induction.

Lemma 2.3 i. W (a,n) < W](a,n)/2 < W] (a,n)/2, for all v, o, and n.

ii. (6/a)es(a,n) < ej(a,n), for all r, o, and n.

www.manaraa.com

2.3. MULTILEVEL HASHING MODEL 21

Lemma 2.4 i. The mazimum number of insertions performed by AL . . , s at most 3n.

i. The mazimum number of random insertion batches performed by AL . . , is at most

(34)"a.

1t. The mazimum number of insertions performed by AL during the second phase

a,m,w,b

18 at most eq.

w. The maximum number of insertions performed by AL during the wide phase is

a,mn,w,b
at most (6/a)ey < eq.

Lemma 2.5 i. A complete adversary sequence leaves the hashing scheme in an a-dense
configuration; a truncated adversary sequence leaves the hashing scheme in an (&, €)-bad

configuration.

1. Whenever the adversary performs a random insertion batch, the hashing scheme is

in a a-dense configuration.

iti. The hashing scheme always uses (o /2, Wy /2)-wide root hash functions in a a-dense

configuration during the wide phase of the adversary.

2.3.3 Two Random Sampling Lemmas

The analysis of the wide phase uses two technical lemmas for analyzing the behaviour
of random samples under a sequence of partial hash functions, so, first, in this section,

we state and prove these lemmas.

We need some definitions before stating the lemmas. Consider partial hash functions
from a universe U to an array of m locations. An a-hash function, for any a € [0, 1],
is a partial hash function that is defined on a domain of density a in U. A sequence of
partial hash functions is called a hashtopy; we think of a hashtopy as a deformation of
a partial hash function over time, where time signifies the integers from 1 to the length
of the hashtopy. For a hashtopy H, H; denotes the ¢-th partial hash function in the
hashtopy. A hashtopy consisting of only a-hash functions is called an a-hashtopy; a
[3-biased hashtopy is defined analogously. Consider a hashtopy H. A location snap of
H is a pair ([,t), where 1 <! <mand 1<t <|H|. Aset S CU refreshes a location
snap ([,t) of H if, for some element & € S, H sends a to location [at time ¢ and H had

www.manaraa.com

22 CHAPTER 2. THE DICTIONARY PROBLEM

sent z to a different location the last time before ¢ when x appeared in H. The refresh
cost incurred by a set 5 C U in 'H is defined as the total number of locations snaps of H
refreshed by 5. The oscillation of an element 2z € U in H is defined as the refresh cost
incurred by @ in H. The oscillation of 'H is defined as the mean oscillation of an element
of U in H. A fized element of 'H is defined as an element whose oscillation in ‘H equals

0; a fized subset of H is defined analogously.

Our first lemma estimates the refresh cost incurred by a random sample in a j3-
biased hashtopy when the sample is constructed by uniformly partitioning the universe

and sampling each partition independently.

Lemma 2.6 (Refresh Cost Lemma) Consider a [3-biased hashtopy H from a uni-
verse U to an array of m locations. Let T = |H|, let n > 1/ be a positive integer, and
let © = the oscillation of H. Partition U into n equal-sized blocks, and select a random
n-subset R from U by picking a random element from each block. R incurs a refresh cost

of at least /453 in W with probability at least (1 — e~ ("@)/(16(T=1)))

Our second lemma says that a random sample from a low oscillation a-hashtopy
is likely to intersect the domains of the hash functions in the hashtopy in dense fixed

subsets.

Lemma 2.7 (Density Lemma) Let H = (hq,ha,...,hytq) be a (1/p)-hashtopy from
a universe U to an array of m locations in which the domains of hy,ha, ..., h, are all
disjoint. Suppose that the oscillation of H is at most (1/2p). Let k be a positive integer,
let € < (1/4kmp?), and suppose that |U| > 1/e. Construct a random sample R of U by
picking a random (¢, k)-sample from each of the hash functions hq, hq, ..., h, and taking
the union of these samples. Let I = the set of elements of U that are left fixed by 'H.
With probability > (1 — Qqe_k/192), Fn RN dom(h;) is a (1/8p)-dense subset of R, for
alli>p+ 1.

We need some further lemmas for proving the above lemmas.

Lemma 2.8 (Martingale Lemma) Let n be a positive integer and let 0 < § < a < 1.

Let X1, Xs,..., X, be a sequence of random variables in the range [0, 1] that are exposed

www.manaraa.com

2.3. MULTILEVEL HASHING MODEL 23
one by one and satisfy the following relation:

E[Xl] —|— E[X2|X1] —|— E[X3|X1,X2] —|— s —|— E[Xn|X1,X2, .. -vXn—l] > an.

PriX:1+ Xo4 -4+ X, > pn] > (1 — e %«8™), where ¢, g was defined in the Binary

Sampling Lemma.

Proof. We generalize the proof of Hoeffding’s inequality [20] that gives the lemma
when the random variables are mutually independent and have fixed means. We show

that

ElMEitXettXn)] < (1 — o 4+ aeh)", forall h <0,

and then complete the proof of the lemma as in Hoeffding’s inequality. We prove this
statement by induction on n using Hoeffding’s ideas, namely the convexity of e¥ and the

inequality between arithmetic and geometric means.

Basis. n = 1: For any z in the range [0, 1], the convexity of ¢"® gives

"< 11—zt e, so taking expectations, we get
E[e"] < 1- E[Xi]+ E[X)e"
< 1—a—|—aeh, since h < 0.

Induction Step. n > 2: The idea is to expose X first and apply induction to the
sequence Xso,..., X,:
E[eh(X1+...+Xn)] — EX1 [th1 EXQ,...,Xn [eh(X2+...+Xn)|X1]]
an — E[X4] e
< By [OB e
(by induction)
— F[X
< (- B - - DB e
n
(by convexity of)
< (I—a+aeh)”

(by the arithmetic and geometric means inequality).

This completes the proof of the lemma. 0O

www.manaraa.com

24 CHAPTER 2. THE DICTIONARY PROBLEM

Lemma 2.9 (Fractional Sampling Lemma) Letky, ko, ..., k; be positive integers with
sum k, let ay, aq, ..., o be values in the interval [0, 1] with weighted mean a = (k1o +
ot kiay)/k, and let 0 < § < a. Consider a family of disjoint populations Uy, Us, ..., Uy
of values in the interval [0, 1] with means ay,aq, ..., ay, respectively. Construct a ran-
dom k-subset R by picking a random k;-subset from U, for each v, and taking the union
of these subsets. R has a mean greater than 3 with probability at least (1 — e=¢xs%),

where ¢ g was defined in the Binary Sampling Lemma.

Proof. Suppose R is constructed by selecting a sequence of random values Yy, Yis,...,Yig
from Uy, Y51, Y22, ..., Yo, from Uy, and so on. Define a set of independent random vari-
ables {X;;|1 < j < k;} as follows: X;; is simply a random value chosen from U;. A result
of Hoeffding [20] (Theorem 4) says that

Ef(ZYzj) < Ef(OXi)

J

for any convex function f and for all 7. For all real numbers h, we have:
EehZiﬂ Vi H Eeh Zﬂ Vi

(as {>°;Yi;li = 1,...,t} are mutually independent)
HEeh Z] Xij

IN

(by convexity of ¢** and by Hoeffding’s result)
— H Ethij
9]

(since X;; are mutually independent).

We use this inequality and complete the proof of the lemma as in Hoeffding’s inequal-
ity [20]. O

We are ready to prove the main lemmas of this section.

Proof of the Refresh Cost Lemma. The basic idea behind the proof is to
construct the random sample R incrementally and use the Martingale Lemma. Let
Uy, Us, ..., U, denote the blocks of the partition of U. Construct R incrementally by

randomly selecting elements from the blocks, one by one. Denote the set of first ¢ el-

ements added to R by R;. For each i € {1,2,...,n}, define a random variable X; =

www.manaraa.com

2.3. MULTILEVEL HASHING MODEL 25

the refresh cost incurred by R; in H minus the refresh cost incurred by R;_1 in H. The
refresh cost incurred by R in ‘H equals X7 + Xo + -+ X,,.

In order to apply the Martingale Lemma, we construct a sequence of random variables
{Yi]i = 1,...,n} whose sum has the same distribution as the sum of the X;s for small

values of the sums:

Y,_{ Xi Xyt X <0/28

T —1 otherwise.

Observe that >, Y; = >, X; whenever). X; < @/2f3 and that >_, ¥; > >, X; always. It
follows that the probability that >, Y; exceeds w/43 equals the probability that Y. X;
exceeds w/4/. We normalize the Y;s to the interval [0, 1] and form new random variables
Z; =Y /(T = 1), for all <. The following lemma says that the Z;s satisfy the condition

of the Martingale Lemma.

Lemma 2.10

wn
E[Z\]+ E[Zy|Ri] + -+ E[Z,|R1, Ry, ..., R 1] > AT =1)

By the Martingale Lemma and using n > 1/, we conclude that the probability that
S Z; exceeds w/(48(T — 1)) is at least (1 — e~ ("#)/(6(T=1))y The Refresh Cost Lemma

follows immediately.
It remains to prove Lemma 2.10.

Proof of Lemma 2.10. We need some definitions. For any set .S C U and element
x € U, the oscillation of x modulo S is defined as the refresh cost incurred by S U {z}
minus the refresh cost incurred by 5. For any pair of sets 5,7 C U, the oscillation of T
modulo S, denoted wg(T'), is defined as the mean oscillation of an element of 7" modulo

S.

Consider the construction of the sample R by adding elements from the blocks, one

by one. Define:

@i = (0, (Ui) + @R, (Uig1) + -+ + @r,_, (Un))/n, and
k= max{t|X;+ Xo+- -+ X; <w/25}.

We have

Grrt € (0= K)(T = 1)/n = (E[Zups|Ral + ElZopal Regi] + -+ EZo] Ruca])(T = 1)/,

www.manaraa.com

26 CHAPTER 2. THE DICTIONARY PROBLEM

For any ¢ < k, we have

Wi — Wit

IN

wr, 4 (Ui)[n+ &R, (U) — &g, (U)
E[Zi|Ri1)(T = 1)/n + BX;

(as each newly refreshed location snap at step ¢ reduces
the oscillation of at most a f-fraction of U).

IN

Summing 7 from 1 to k, we get

€
1

(1 — @)+ (W —w3) 4+ -+ + (@ — Dpg1) + Prt1
(E[Z1] + E[Zo|Ra] + - -+ E[Zo|Roa DT = 1)/ + B(X1 + Xo 4 -+ Xy)
(ELZ1) + ELZalRa) + -+ E[Zal Rt)T = 1)/ 0+ /2.

IN

IN

The lemma follows from this inequality. O
This completes the proof of the Refresh Cost Lemma. O

Proof of the Density Lemma. Since the oscillation of H is at most 1/2p, it follows
that |F'| > (1 —1/2p)|U|. Thus F'Ndom(h;) has a density of at least 1/2p in U, for all j.
We complete the proof of the lemma by showing that the intersection of R with any fixed
(1/2p)-dense subset of U is a (1/8p)-dense subset of R with probability > (1 —2e~#/192),

Let S be any (1/2p)-dense subset of U. We want to estimate the probability that
RN S is a(1/8p)-dense subset of R. Let D denote the set of elements that are deleted
from the domains of hash functions hq,...,h, when R is constructed by taking (e, k)-
samples of these hash functions. Since ¢ < (1/4kmp?), it follows that |D| < |U|/4p.
Define S1 = S\ D; 57 is a (1/4p)-dense subset of U. We show that 57 N R is likely to be

(1/8p)-dense in R using two successive applications of the Fractional Sampling Lemma.

Let us review the construction of R. R is constructed by picking a random k-subset
from each of the sets U; = dom(h;)\D, for i < p, by forming the union Ry of these
subsets, by picking dense subsets of U that go into the same locations as the elements

of Ry, and by forming the union of these dense subsets.

For each element x € dom(h;), define
)0 |
A (hi(2))]

value(z)

We have

Fyeuvalue(z) > F value(z), and

wedom(h;)

www.manaraa.com

2.3. MULTILEVEL HASHING MODEL 27

i Evev,value(z)
p

Eyeuvalue(z) > 1/4p.
By the Fractional Sampling Lemma, it follows that Ry has a mean value of at least 1/6p
with probability > (1 — e=*/72),
We estimate the probability that R N Sy is (1/8p)-dense in R, given that Ry has a
mean value of at least 1/6p. For all i € {1,2,...,p} and all [€ {1,2,...,m}, define
UZ'J = hi_ll and
ku = |R1 N U¢71|.

Define the characteristic function xg, of set 5y:

1 ifze s
XS1($):{ n Y !

0 otherwise

Since the mean value of Ry is at least 1/6p, it follows that

i kigEveu, s, ()
kp

> 1/6p.

Since R is formed by picking a random (k; ;€|U|)-subset of U;; and taking the union of
these subsets, by the Fractional Sampling Lemma, it follows that RN .Sy is a (1/8p)-dense
subset of R with conditional probability > (1 — e‘k/192), given that Ry has a mean value
> 1/6p.

We conclude that R N Sy is a (1/8p)-dense subset of R with probability > (1 —
2€_k/192). This completes the proof of the lemma. O

2.3.4 The Worst-case Lower Bound

In this section, we analyze the adversary defined in Section 2.3.2 and prove a lower bound
of Q(log(logn/logb)) on the worst-case cost of dictionary operations in the refresh cost
multilevel hashing model, where n = the maximum dictionary size during the operation

sequences.

Let H be any partial hashing scheme. We say that H succeeds on a sequence of

operations ¢ performed by adversary AL

Bonwb if ¢ is a complete sequence of operations,

the maximum cost of an update operation in ¢ is at most w, and the maximum level of

a dictionary element during o is at most r.

www.manaraa.com

28 CHAPTER 2. THE DICTIONARY PROBLEM

The following lemma bounds the success probability of a partial hashing scheme

against the adversary.

Lemma 2.11 Let @ = (a1, az,...,ax) be a sequence of values in the interval [0, 1], let
a = a, and let W = W"(a,n) > 1. Let H be a partial hashing scheme that has a
(Wb)-bit root location and b-bit locations at levels > 2. H succeeds against A7, ., with
probability < e=W?,

The lemma gives a trade-off between the worst-case costs of search operations and
update operations incurred by a hashing scheme. Let H be a multilevel hashing scheme
in the refresh cost model with wordsize b that incurs a worst-case cost of r on searches
and a worst-case cost of w on updates in processing sequences of O(n) operations. H

has the following trade-off between r, w, and b:
w=Q(n'? |b).
This trade-off gives a lower bound of (log(logn/logb)) for max{r, w}.

The rest of this section is devoted to proving Lemma 2.11. The proof is by induction

onr. Let Uy DUy D --- D Ui = U be the tower of universes of H.

Basis. r = 1: Following a successful adversary sequence, the working subuniverse
of H has density > o in U. Let S(v) be a fixed a-dense working subuniverse used
by H following a successful adversary sequence. By the Fractional Sampling Lemma,
the random first batch has > an/4 elements in S(v) with probability > (1 — e=2"/16).
The root location can store at most Wb = an/c; distinct elements of U, so if ¢; > 4,
some element of the first batch is stored at a level > 2 with this probability. Since the
root location can store at most 297/t distinct values v, the success probability of H is

< 9on/cig=on/16 \We choose ¢q > 32 so that the success probability of H is < e—an/e

Induction Step. r > 2: We estimate the probability that H succeeds against the

adversary:

Pr[success] = Pr[narrow phase completes successfully] +

Pr[wide phase completes successfully]

If the narrow phase completes successfully then the induced hashing scheme Hy

succeeds against its adversary AE; wy- Thus, by induction, the first term is bounded
—-Wib

by e .

www.manaraa.com

2.3. MULTILEVEL HASHING MODEL 29

We bound the second term by showing that any fixed sequence of root hash functions
H = (h1,hg, ..., k) used before the random insertion batches during the wide phase has
a low probability of success; actually, here h; denotes the root hash function used at
the end of the adversary sequence and h;_; denotes the root hash function used before
the last random insertion batch. The hash functions h; are all (a/2, W;/2)-wide, so
they can be pruned to obtain (a/Wj)-biased hash functions g; by deleting subsets of
density < a/2 in U from their domains. The g;s are («/2)-hash functions. We apply
the incremental construction of the random subuniverse Uiy during the first phase to
the sequence (g1, ¢2,. .., ¢:) and determine the prefix (g1, ¢2,...,¢,) of the sequence from
which Ugyq is constructed through random sampling. When sampling from a pruned
hash function g;, we restrict g; to a subdomain D’ of density «/4 in U and sample from
the restriction f; = ¢;|pr. The domains of the restrictions f;, for 1 < ¢ < p, are all disjoint
and the union of these domains equals U'. The domains of the hash functions g;, for
J > p+1,intersect U! in a (a/4)-dense subset of U, since, otherwise, the construction of
Ui41 would have also involved g;. We restrict each hash function g¢;, for j > p+1, to the
subdomain dom(g;) N U' and obtain a (a/4)-hash function f;. Consider the hashtopy

F = (f1, f2,---, fi) over universe Ul. Two cases arise:

Case 1. The oscillation of F is at least «/8: By the Refresh Cost Lemma, since F
is a (a/Wy)-biased hashtopy, the first batch of the adversary incurs a refresh cost of at
least W, /32 in F with probability at least (1 — e~("*/1280) We choose cq > 192 so that
the total refresh cost available during the wide phase is at most 6eqw/a < Wy/32. The

probability of success of H is < e~ (n/1280),

Case 2. The oscillation of F is at most a/8: Uy is formed by picking (4¢/ap, W2/2)-
samples from the hash functions f;, for ¢« < p, and taking the union of these samples;
here we have scaled € to convert densities from U to U!. F is a (1/p)-hashtopy over
U', the oscillation of F is at most 1/2p, and (4e/ap) < (1/4kmp?). Let F = the set
of elements of U! that are left fixed by F. By the Density Lemma, with probability
> (1-— 2[6_W2/384), F N Uk Ndom(h;) is (a/32)-dense in Ugyq, for all i > p+ 1. We
call this property of Uriq as the density property.

Fix a sequence of insertions o performed by the adversary prior to the wide phase
and fix a subuniverse Ugyq chosen by the adversary with the density property. Under

these conditions, if H succeeds against the adversary, then the induced hashing scheme

www.manaraa.com

30 CHAPTER 2. THE DICTIONARY PROBLEM

Hy succeeds against its adversary A%;z,wb; the second phase can not get truncated
because Ujy1 has a dense fixed intersection with dom(h;). By induction, under the

above conditions, H succeeds against the adversary using H with probability < e="2?,

In both cases, the probability that I succeeds using root hashtopy H is at most
max{e(@n/1280) (20 + 1)6—W2/384} < e~ W2/500,

for sufficiently large ¢;. The total number of root hashtopies H available is at most
oWHEN T o I we let W < (Waa/1000(34)"~1b) (by making ¢; large enough), then the
probability that H successfully completes the wide phase is at most e~"2/1000,
The probability that H succeeds against the adversary is at most Wby o=W2/1000 <

e=Wb since W is small relative to Wy and Wj. This completes the proof of the lemma.

2.3.5 Amortization

In this section, we prove a lower bound of Q(log(logn/logb)) on the amortized cost
of dictionary operations in the refresh cost multilevel hashing model, where n = the

maximum dictionary size during the operation sequences.

Any hashing scheme H with an amortized cost of r on searches and an amortized
cost of w on updates can be converted into a hashing scheme H’ with a worst-case cost
of 7 on searches and an amortized cost of w on updates. H' simulates the behaviour of H
in processing all the operations, but always stores the dictionary elements in the first r
levels. A search operation is performed by H’ by simulating H, but H' does not change
the memory configuration even if H does. An update operation is performed by H' by
simulating H and then compressing the dictionary to the first r levels by performing
sufficiently many greedy searches that each have a search cost > r + 1. Consider a
sequence ¢ of u update operations performed on H'. o translates into a sequence & of
u update operations and ¢ greedy searches on H. Let w; = the refresh cost of the ¢-th
operation in &. The cost of @ on H is at least Y ; w; + g(r+ 1) and at most gr + uw, so
it follows that Y, w; < uw. We conclude that H' incurs a worst-case cost of 7 on search

operations and an amortized cost of w on update operations.

We complete the proof of Theorem 2.1 by showing that a hashing scheme incurs
either a worst-case cost of r on searches or an amortized cost of Q(n'/2"/22"b) on updates

in processing operation sequences of length O(n). We modify the worst-case adversary

www.manaraa.com

2.3. MULTILEVEL HASHING MODEL 31

A% .0 DY appropriately performing greedy insertion batches following random insertion
batches. A configuration C' of a partial hashing scheme I is said to be w-amortized,
for a positive integer w, if the cost incurred by H in processing any sequence o of
update operations, starting from configuration C, is at most |o|w. The new adversary
Ag,n,w,b is tailored against (@, e)-good partial hashing schemes that start processing the
adversary sequence in a w-amortized configuration; here e is a suitably defined positive
integer. Either the adversary performs a complete sequence of O(n) insertions, or it
gets truncated because the scheme has entered a (@, €)-bad configuration or because the

scheme was not in a w-amortized configuration, initially.

r
o,n,w,

We define adversary A , against a partial hashing scheme H; let a denote the
last component of a. A w-greedy insertion batch performed against a hashing scheme H
in a configuration € is defined to be a maximal sequence ¢ of insertions, starting from
configuration C', during which H incurs an update cost of at least w|o|. The adversary
performs a random first batch just like the worst-case adversary, then performs a (2w)-
greedy insertion batch, and, finally, performs the tail phase; the adversary announces
truncation even before performing the first batch if the initial configuration of H is not
w-amortized. The tail phase is defined recursively, essentially as before, and consists
of a narrow phase, possibly, followed by a wide phase; in the case r = 1, as before,
the tail phase is a suitable extension batch that takes H to an a-dense configuration.
r=1 ., Performed

517n7 ’
against the induced hashing scheme H; that is constructed as before. If the narrow phase

The narrow phase consists of the tail phase of the recursive adversary A

gets truncated, then H; has entered an (a,e;)-bad, (22 w)-amortized configuration.
Equivalently, H has entered a (22T_2w)—amortized configuration such that H uses only
(ag/2,W;/2)-wide root hash functions in any a-dense configuration during the next e;
insertions. The wide phase consists of a first phase followed by a second phase that
are defined slightly differently from the worst-case adversary. During the first phase,
following each batch of random insertions, we perform a (22T_2+1w)—greedy insertion
batch so that, at the end of the first phase, H is in a (22T_2+1w)—amortized configuration.
The second phase is recursively defined to be the tail phase of adversary A%;,;/722T_2w,b

performed against the induced hashing scheme H; that is constructed as before. This

completes the definition of A~

a,m,aw,b*

We define parameters e, ey, eq, W, Wy, and W5 as functions of r, o, n, and w. Only

www.manaraa.com

32 CHAPTER 2. THE DICTIONARY PROBLEM

the definition of e(a, n,w) has to be modified since it depends on w:

2r—2

es(a,n,w) = aW{(a,n,w)/(ce2” w) (2.7)

The recurrence for W becomes:

2pr—1

_ w 2 r—2

Wr—1(a/32,2 Ta_/2 W) 92 w)o
8c022 w

W (a,n,w)= L ifr>2
an/erb otherwise

This recurrence has the following solution:

a2T+1—3

W (a,n,w)=n

(64)(7’—1)(57“—8)/%%”1_T_2222T_3_2T_2 b2 —1(8cow)2 ' 1 '
Hence the values of the parameters is approximately n(a/22 wb)?".

The Lemmas 2.3, 2.4, and 2.5 still hold for Ag,n,w,b with the exception of Lemma 2.4,

Parts i. and iv. We modify some parts of the lemmas as follows:
Lemma 2.3 ii’. (10/a)el(a,n,w) < €f(a,n,w), for all v, a, n, and w.

Lemma 2.4 i’. The mazimum number of insertions performed by A, . is at most 4n.
w’. The maximum number of insertions performed by Ag b during the wide phase is

at most (10/a)e; < €.

Lemma 2.5 i”. A complete adversary sequence leaves the hashing scheme in an a-dense
configuration; a truncated adversary sequence leaves the hashing scheme in a (22T_1w)-

amortized (&, e)-bad configuration.

Lemma 2.11 still holds for A”

a,m,aw,b*

Lemma 2.12 Let @ = (a1, az,...,ax) be a sequence of values in the interval [0, 1], let
a = ag, and let W = W (a,n,w) > 1. Let H be a partial hashing scheme that has a
(Wb)-bit root location and b-bit locations at levels > 2. H succeeds against A7 ., with
probability < e=W?,

This lemma gives a trade-off between the worst-case cost of searches, r, and the

amortized cost of updates, w, incurred by a multilevel hashing scheme in the refresh cost

www.manaraa.com

2.3. MULTILEVEL HASHING MODEL 33

model in processing sequences of O(n) operations:
w = Qn'? 127 b).

The lower bound of Theorem 2.1 follows from this trade-off and our procedure for convert-
ing an amortized hashing scheme into a hashing scheme with a worst-case cost guarantee

for search operations.

Lemma 2.12 is proved in the same way as Lemma 2.11. The only part of the proof
that changes due to amortization is Case 1 of the induction step. In this case the total
refresh cost available during the wide phase is at most 106222T_2w/a. We choose ¢q > 320
so that this quantity is less than W, /32, which is the probable refresh cost incurred by
the first batch. The rest of the proof remains as before.

www.manharaa.com

34 CHAPTER 2. THE DICTIONARY PROBLEM

www.manharaa.com

Chapter 3

The Deque Conjecture

Splay is an algorithm for searching binary search trees, devised by Sleator and Tarjan,
that reorganizes the tree by means of rotations. Sleator and Tarjan conjectured that
Splay is, in essence, the fastest algorithm for processing any sequence of search operations
on a binary search tree, using only rotations to reorganize the tree. Tarjan proved a
special case of this conjecture, called the Scanning Theorem, and conjectured a more

general special case, called the Deque Conjecture.

In this chapter, we prove tight bounds for some combinatorial problems involving
rotation sequences on binary trees, derive a result that is a close approximation to the

Deque Conjecture, and give two new proofs of the Scanning Theorem!.

3.1 Introduction

We review the Splay Algorithm, its conjectures and previous works on them, and describe

our results.

3.1.1 The Splay Algorithm and Its Conjectures

Splay is a simple, eflicient algorithm for searching binary search trees, devised by Sleator
and Tarjan [28]. A splay at an element x of a binary search tree first locates the element
in the tree by traversing the path from the root of the tree to the element (called the

access path of the element) and then transforms the tree by means of rotations in order

!The work of this chapter was reported in [30].

35

www.manaraa.com

36 CHAPTER 3. THE DEQUE CONJECTURE

to speed up future searches in the vicinity of the element. The splay transformation
moves element & to the root of the tree along its access path by repeating the following

step (See Figure 3.1):

Splay step.

Let p and g denote, respectively, the parent and the grandparent of z.
Case 1. p is the root: Make 2 the new root, by rotating the edge [z, p].
Case 2. [z,p] is a left edge (i.e. an edge to a left child) and [p, ¢] is a right
edge, or vice versa: Rotate [, p]; Rotate [z, g].

Case 3. Either both [z, p] and [p, g] are left edges, or both are right edges:
Rotate [p, ¢g]; Rotate [z, p].

Sleator and Tarjan proved that Splay is, upto a constant factor, as efficient as the
more complex traditional balanced tree algorithms for processing any sequence of binary
search tree operations. They also showed that Splay actually behaves even faster on
certain special kinds of sequences and conjectured that Splay is, upto a constant factor,
the fastest rotation-based binary search tree algorithm for processing any sequence of
searches on a binary search tree. We state this conjecture and some closely-related

conjectures:

Conjecture 3.1 (Dynamic Optimality Conjecture [28]) Let s denote an arbitrary
sequence of searches of elements in a given n-node binary search tree. Define x(s) equal
to the minimum cost of executing sequence s on the tree using an algorithm that performs
searches, incurring a cost equal to (14 the distance of the element from the root) on each
search, and transforms the tree by means of single rotations, incurring unit cost per single

rotation. Splay takes O(n + x(s)) time to process s.

Conjecture 3.2 (Deque Conjecture [33]) Deque operations on a binary tree trans-
form the tree by inserting or deleting nodes at the left or right end of the tree. We
perform deque operations on a binary tree using Splay as follows (See Figure 3.2): Pop
splays at the leftmost node and removes it from the tree; PUSH inserts a new node to the
left, making the old tree its right subtree; EJECT and INJECT are symmetric operations
performed at the right end. Splay takes O(m + n) time to process a sequence of m deque

operations on an n-node binary tree.

www.manaraa.com

3.1. INTRODUCTION 37

www.manharaa.com

38 CHAPTER 3. THE DEQUE CONJECTURE

Conjecture 3.3 (Right Turn Conjecture [33]) Define a right 2-turn on a binary
tree to be a sequence of two right single rotations performed on the tree in which the
bottom node of the first rotation coincides with the top node of the second rotation (See
Figure 3.3). In a sequence of right 2-turns and right single rotations performed on an

n-node binary tree, there are only O(n) right 2-turns.

P
T

IaN
INJECT(6)

0

3%

Figure 3.2: The deque operations.

The conjectures are related as follows. A stronger form of the Dynamic Optimality
Conjecture that allows update operations as well as search operations implies the Deque

Conjecture. The Right Turn Conjecture also implies the Deque Conjecture.

www.manharaa.com

3.1. INTRODUCTION 39

3.1.2 Terminology

We define the basic terminology used in the chapter. A binary search tree over an
ordered universe is a binary tree whose nodes are assigned elements from the universe
in symmetric order: that is, for any node x assigned an element e, the elements in the
left subtree of @ are lesser than e and the elements in the right subtree of z are greater
than e. The path between the root and the leftmost node in a binary tree is called the
left path. A tree in which the left path is the entire tree is called a left path tree. The
edge between a node and its left child in a binary tree is called a left edge. The paths
in a binary tree that comprise only left edges are called left subpaths. The left depth of
a node in a binary tree is defined to be the number of left edges on the path between the
node and the root. The terms right path tree, right path, right edge, right subpath, and
right depth are defined analogously. A single rotation of an edge [z, p] in a binary tree
is a transformation that makes a the parent of p by transferring one of the subtrees of
z to p (See Figure 3.3). A single rotation is called right or left, respectively, according
to whether [z, p] was originally a left edge or a right edge. A rotation on a binary tree
is a sequence of single rotations performed on the tree. A rotation is called left or right,
respectively, if it consists solely of left single rotations or solely of right single rotations.
A double rotation on a binary tree is a sequence of two single rotations performed on the
tree that have a node in common (as, for instance, by a splay step). A left path rotation
on a binary tree is a right single rotation performed on the left path of the tree. A right

path rotation is defined analogously.

We define the Ackerman hierarchy of functions {A;|¢ > 0}, its inverse hierarchy

{&;|t > 0}, and inverse functions & and « of the Ackerman function as follows:

Ao(j) = 24 forallj>1
Ai(j) = 20 forallj>1
() = A;i_1(2) ifi>2and j=1
T A (4G - 1) ifi>2and j > 2
G&;(n) = min{k > 1|A;(k) > n} foral n>1
a(n) = min{k > 1JAx(1) > n} foralln>1
a(m,n) = min{k > 1|Ax(|m/n]|) >logn} forall m>n>1

www.manaraa.com

40 CHAPTER 3. THE DEQUE CONJECTURE

i. A single rotation

p x
90/70 Qx\p
S8 = L8
A B B C

ii. A right 3-twist

@pﬁ o .
old bﬁ@

iii. A right 3-turn

ﬁﬁ %b
7 0

iv. A right 3-cascade

O

14
ﬁgﬁ — A&
0/7 O

Figure 3.3: The various types of rotations.

www.manharaa.com

3.1. INTRODUCTION 41

The following table concretizes this definition:

2 0 1 2 3 4
, Y
Ai(j) 27 27 22
ai(n) [n/2] | [logn] | <log*n | <log™n | <log™*n
Vi
{nla(n) = i) 12 | gy | pag |pee M

3.1.3 Previous Works

Previous works on the Dynamic Optimality Conjecture have been mostly directed to-
wards resolving its corollaries. Tarjan [33] proved that Splay requires linear time to
sequentially scan the nodes of an n-node binary tree in symmetric order. This theorem,
called the Scanning Theorem, is a corollary of all of the above conjectures. He also ex-
tended his proof to a proof of the Deque Conjecture when all the output operations are
performed at one end of the tree. Lucas [22] obtained an O(na(n)) upper bound for the
Deque Conjecture when all the operations are output operations and the initial tree is a
simple path between the leftmost and rightmost nodes. Building upon the work of Cole
et al. [11], Cole [9,10] recently proved Sleator and Tarjan’s Dynamic Finger Conjecture
[28] for the Splay Algorithm which is a corollary of the Dynamic Optimality Conjecture.
Wilber [36] gave two elegant techniques for lower-bounding x(s). The techniques yield
optimal lower bounds for some special sequences (such as x(s) = Q(nlogn) for the bit-
reversal permutation), but it is not clear how tight these lower bounds are for general

sequences.

A related combinatorial question that has been studied is, how many single rotations
are needed, in the worst case, to transform one n-node binary tree into another n-node
binary tree? Culik and Wood [12] noted that 2n — 2 rotations suffice and, later, Sleator
et al. [29] derived the optimal bound of 2n — 6 rotations for all sufficiently large n.

3.1.4 Ouwur Results

Our work is directed towards resolving the Deque Conjecture. A good understanding of
the powers of various types of rotations on binary trees would equip us with the necessary
tools to tackle the conjecture. We prove almost tight upper and lower bounds on the

maximum numbers of occurrences of various types of right rotations in a sequence of

www.manaraa.com

42 CHAPTER 3. THE DEQUE CONJECTURE

right rotations performed on a binary tree. We study the following types of rotations

(See Figure 3.3):

Right twist: For all & > 1, a right k-twist is a sequence of k right single rotations

performed along a left subpath of a binary tree, traversing the subpath top-down.

Right turn: For all k£ > 1, a right k-turn is a right k-twist that converts a left subpath
of k edges in a binary tree into a right subpath.

Right cascade: For all £ > 1, a right k-cascade is a right k-twist that rotates every
other edge lying on a left subpath of 2k — 1 edges in a binary tree.

A right twist sequence is a sequence of right twists performed on a binary tree. Define
Twi(n), Tug(n) and Ci(n), respectively, to be the maximum numbers of occurrences
of k-twists, k-turns and k-cascades in a right twist sequence performed on an n-node

binary tree. These numbers are well defined since a tree is transformed into a right path

after (g) right single rotations. We derive the following bounds for Twg(n), Tuk(n)

and Ci(n):
Upper bound Lower bound
Twi(n) O(kn'*17F) Q(n' 1%y — O(n)
Tug(n) O(ndtk/QJ (n)) ifk#3 Q(ndtk/QJ (n))—0O(n) ifk#3
C(n) O(nloglogn) ifk=3 Q(nloglog n) if k=3

The bounds for Tug(n) and Ci(n) are tight if & < 2a(n)—5 and the bounds for Twy(n)
are nearly tight. The Right Turn Conjecture is refuted by the lower bound of (nlogn)
for Tua(n)?. We apply the upper bound for cascades to derive an O((m + n)a(m + n))
upper bound for the Deque Conjecture.

Another approach to the Deque Conjecture is to find new proofs of the Scanning
Theorem that might naturally extend to the Deque Conjecture setting. We obtain a
simple potential-based proof that solves Tarjan’s problem [33] of finding a potential-
based proof of the theorem, and an inductive proof that generalizes the theorem. The
new proofs enhance our understanding of the Scanning Theorem, but, so far, have not

led to a proof of the Deque Conjecture.

25.R.Kosaraju has independently proved that Tu»(n) = #(nlogn). While his upper bound proof
differs from ours, the lower bound constructions match.

www.manaraa.com

3.2. COUNTING TWISTS, TURNS, AND CASCADES 43

The chapter is organized as follows. In Section 3.2, we prove the bounds for T'wy(n),
Tug(n) and Cg(n). In Section 3.3, we derive the upper bound for the Deque Conjecture.

In Section 3.4, we describe the new proofs of the Scanning Theorem.

3.2 Counting Twists, Turns, and Cascades

The two subsections of this section derive the upper and lower bounds for Twg(n),

Tug(n) and Ck(n).

3.2.1 Upper Bounds

All our upper bound proofs are based on a recursive divide-and-conquer strategy that
partitions the binary tree on which the right twist sequence is performed into a collection
of vertex-disjoint subtrees, called block trees. The root and some other nodes within each
block are labeled global and the global nodes of all of the block trees induce a new tree
called the global tree. FEach rotation on the original tree effects a similar rotation either
on one of the block trees or on the global tree. This allows us to inductively count the

number of rotations of each type in the sequence.

We need the notion of blocks in binary trees [33]. Consider an n-node binary tree
B whose nodes are labeled from 1 to n in symmetric order. A block of B is an interval
[¢,7] C [1,n] of nodes in B. Any block [4, j] of B induces a binary tree B|[; ;, called the
block tree of block [7, j], which comprises exactly the nodes i to j. The root of BJ; ; is
the lowest common ancestor of nodes 7 and j in B. The left child of a node = in B|}; ;
is the highest node in the left subtree of # in B which lies in block [, j]. The right child
of a node in BJj; ;) is defined analogously. Notice that, for the subtree rooted at any
node of B, the highest node of the subtree which lies in block [7, j] is unique whenever
it exists: if two equally highest nodes exist, then their lowest common ancestor in the
subtree would be higher than the two nodes, resulting in a contradiction. How does a
rotation on B affect a block tree B|; 17 If both of the nodes involved in the rotation are
in Bl ;), then the rotation translates into a rotation on Bl ; involving the same pair

of nodes. Otherwise, B|; ; is not affected.

The functions Twg, Tu and C are superadditive:

www.manaraa.com

44 CHAPTER 3. THE DEQUE CONJECTURE
Lemma 3.1 Forallk>1 and m > n > 1, we have:

a. |m/n|Twi(n) < Twg(m),
b. |m/n|Tur(n) < Tug(m), and

c. m/n]Cr(n) < Cr(m).

Proof. We prove Part a.; Parts b. and c. are similar. Given a right twist sequence
S for an n-node binary tree B that comprises T'wy(n) right k-twists, construct a new
tree of size [m/n|n < m by starting with a copy of B and successively inserting a new
copy of B as the right subtree of the rightmost node in the current tree [m/n| — 1 times.
Since S can be performed on each of the copies of B one after another, there exists a
right twist sequence with |m/n|Twg(n) k-turns for a tree of size m. Part a. follows

immediately. O

The upper bound for twists is the simplest to derive. Define L;(j) = ! +Ji B 1) for

all ¢ > 1 and j > 1. The upper bound for T'wy(n) for n of the form Ly(j) is given by:

k-1

Lemma 3.2 Twi(Li(j)) < k(E

)forallkZlandel.

Proof. We use double induction on k and j.
Case 1. k=1 or j = 1: Straightforward.

Case 2. k > 2 and j > 2: The tree is partitioned into a left block of Ly_1(j) nodes
and a right block of Li(j — 1) nodes. A right twist sequence on the tree translates into
corresponding right twist sequences on the left and right block trees. We classify the
k-twists in the original sequence into three categories and count the number of k-twists
of each type separately. In the first type of k-twist, the lowest £ — 1 single rotations
involve only left block nodes. Such a k-twist translates into a (k — 1)-twist on the left

block tree. Applying induction to the induced right twist sequence performed on the left

k+j—-2 .
block tree, we see that there are at most (k — 1) —I_i k-twists of the first type
in the original right twist sequence. Similarly, the number of k-twists that involve only

k-2
k41

these two categories. The highest single rotation of such a twist must involve only right

right block nodes is at most k(. Consider a k-twist that does not belong to

www.manaraa.com

3.2. COUNTING TWISTS, TURNS, AND CASCADES 45

block nodes; also, the lowest node involved in the twist must be a left block node. This
implies that the highest node of the twist is a right block node that leaves the left path
of its block as a result of the twist. Right rotations never add nodes to a block’s left

path, so the number of k-twists in the last category is at most the initial size of the left

k4+j5-—2
k

right k-twists in the right twist sequence is bounded by

kit g2 ktj-2), (k+i-2
(k=2 kit -2

B k+j—1
o k(E+1)

A simple calculation using the above lemma and Lemma 3.1a gives the upper bound

path of the right block < Li(7 —1) = . It follows that the total number of

for Twy(n) for all n:

Theorem 3.1 Twi(n) < En % for all k > 1 and n > 1.

k4«

Proof. Fix k and define j = min{i|n < (h

)} Then we have

Ti(n) < n((’“;"))/t(’“;j)/m (By Lemma 3.1a)
< Qk(Zi{)n/(kZ‘]) (By Lemma 3.2)
< knltl/k,

We derive the upper bounds for turns and cascades. It is easy to see that Tui(n) =

Ci(n) = (g) < nég(n). Let us prove that T'ug(n) = O(naq(n)). Consider any right

twist sequence performed on a binary tree B. We divide B into a left block [1,[n/2]]
and a right block [[n/2] + 1,n]. Every 2-turn either involves nodes from only one block
(intrablock) or involves nodes from both blocks (interblock). An intrablock 2-turn effects

a 2-turn in the corresponding block tree and gets counted in the right twist sequence for

www.manaraa.com

46 CHAPTER 3. THE DEQUE CONJECTURE

the block tree. Every interblock 2-turn either adds a node to the right path of the left
block tree or deletes a node from the left path of the right block tree (See Figure 3.4).
Right rotations never remove nodes from a block’s right path or add nodes to a block’s
left path, so the number of interblock 2-turns is at most n—2. This leads to the following

recurrence for T'ug(n):

Tus(|n/2|)+ Tus(|{n/2|)+n—-2 ifn>3
Tu?(n)é{o (Ln/2]) + Tuz([n/2]) fnzs

Solving the recurrence yields the desired bound for T'us(n):
Tuy(n) < nflogn] — pllogn] _, + 2 < néy(n).

With a slight modification the same proof works for 2-cascades also. An interblock
2-cascade either decreases the size of the left path of the right block tree or increases
the number of left block nodes whose left depth relative to the block is at most 1 (See
Figure 3.5). Right rotations never increase the left depth of a node, so the number of

interblock 2-cascades is at most n — 3. The bound Cy(n) < néy(n) follows.

*

7=

*
REKD
-

Figure 3.4: The two types of interblock right 2-turns. Circles denote left block nodes and
squares denote right block nodes. The stars identify the nodes that lie on the left/right
path of a block.

www.manaraa.com

3.2. COUNTING TWISTS, TURNS, AND CASCADES 47

Figure 3.5: The three types of interblock right 2-cascades. The sharps identify the left
block nodes that have a left depth of at most 1; the stars identify the right block nodes
lying on the left path of their block.

www.manharaa.com

48 CHAPTER 3. THE DEQUE CONJECTURE

In order to extend the above argument to k-turns and k-cascades for k£ > 3, we need

an Ackerman-like hierarchy of functions {K;|i > 1}:

Kq(j) = 8j forallj>1
Ky(j) = 2% forallj>1

K _5(|i/2)) ifi>3andj=1

K:(j) = { Ki(j— D)K;—2o(K;(j —1)/4)/2 ifi>3and j>2

The function K; grows faster than the Ackerman function ALi/QJ :

Lemma 3.3 [. Agz)(j) < K3(j) for allj > 1.

2. ALi/QJ ()< Ki(j) foralli#3 and j > 1. O
The upper bound for Tug(n) for n of the form Ky(j) is given by:
Lemma 3.4 Tup(Ky(7)) < 45Ki(j), forallk > 1 and j > 1.

Proof. We use double induction on k and j.
Case 1. 1 < k < 2: The lemma follows from the bounds T'ui(n) < néo(n) and
Tuy(n) < naq(n).

Case 2. k > 3 and j = 1: We need to show that Tuy(K;(1)) < 4K;(1). Consider a
binary tree B having Kj(1) nodes on which a right twist sequence is performed. Divide
B into a sequence of Kj_5(|k/2])/2 blocks of size 2k each. Each k-turn is of one of the
following types:

Type A. All of the nodes involved in the k-turn belong to a single block: Since a

block has only 2k nodes, there can be at most one such k-turn per block.

Type B. Some two nodes of the k-turn belong to a single block, but not all of the
nodes of the turn are in that block: Let C' denote the block tree of this block. The k-turn
causes either an increase in the size of the right path of C', or a decrease in the size of

the left path of C', or both. Hence the number of Type-B k-turns is at most 2/K;(1).

Type C. Each node of the k-turn belongs to a different block: To handle this case,
we label the root of each block global. The global nodes in B induce a binary tree G,
called the global tree. The root of G is identical to the root of B. The left child of a

www.manaraa.com

3.2. COUNTING TWISTS, TURNS, AND CASCADES 49

node z in G is the highest global node in the left subtree of & in B. The right child of
a node is defined similarly. It is easy to see that the left and right children of any node
in GG are unique. The effect on G of a rotation on B is analogous to the effect of such a
rotation on a block tree of B: A rotation on B translates into a rotation on G if both of
the nodes of the rotation are global; otherwise, GG is unaffected. (If a rotation changes
the root of a block then the global role passes from the old root to the new root but this
does not affect the global tree.)

Suppose that the k-turn turns the left subpath &y — 23 — -+ — 2341 of B into a
right subpath. Since all the x;s are from different blocks, the nodes zo, 23, ..., 2} are all
global. Therefore, the k-turn results in a (k — 2)-turn on G (if 21 or 241 is also global,
then some right single rotations are also performed on G.) The number of (k — 2)-turns

that can be performed on G is at most
Tuk—2(Ki—2(k/2])/2) < Tup—o(Kp—2(|k/2]))/2 (By Lemma 3.1b)

< 2|k/2]Kr—2(|k/2]) (By the induction hypothesis)
I(k(l).

A

This gives an upper bound of Kj(1) for the number of Type-C k-turns performed on B.

Summing together the above bounds for the three types of k-turns, we obtain a bound

of
I(k_g(tk/QJ)/Q + QI(k(l) + I(k(l) < 4I(k(1)

for the total number of k-turns in the right twist sequence. This completes Case 2.

Case 3. k > 3 and j > 2: We divide the binary tree on which the right twist
sequence is executed into Ky(j)/Ki(j — 1) blocks of size K1(j — 1) each. We split the
k-turns into the three types defined in Case 2 and obtain the following tally for each
type of turn:

Number of Type-A k-turns
Ki(j)

- Ki(j-1)

A7 = D Ew(J)-

Number of Type-B k-turns < 2K.(j5).

A(j— 1)Kg(j — 1) (By the induction hypothesis)

IN

Number of Type-C k-turns

www.manaraa.com

50 CHAPTER 3. THE DEQUE CONJECTURE

IN

Tup—o(Kp—o(Kp(j —1)/4)/2)
Tup_o(Kp_o(Kr(j —1)/4))/2 (By Lemma 3.1b)
Ki(j — 1)Kp_2(Ky(j—1)/4)/2 (By the induction hypothesis)

Ki(j).

VAN VAN

Hence the total number of k-turns in the sequence is at most
A7 = DERG) + 2K%(5) + Ki(5) < 47K5(5)-

This finishes Case 3. O

Combining the above lemma with Lemmas 3.1b and 3.3, we obtain the upper bound

for Tug(n) for all k and n:

Theorem 3.2

8ndU€/2J (n) ifk#3
8n loglogn k=3 DO

Tug(n) < {

The upper bound for cascades is derived analogously:
Theorem 3.3

Culn) < { 8nde/2J (n) sz #3
8n loglogn ifk=3

Proof. It suffices to prove Lemma 3.4 for Ci(n): Cp(Kk(5)) < 4jKi(j), forall k > 1
and j > 1. Referring to the proof of Lemma 3.4, only the handling of Cases 2 and 3
has to be modified. Consider Case 2. As before, the blocks have size 2k each. The

k-cascades are categorized as follows:

Type A. All nodes involved in the cascade belong to a single block: There is at most
one Type-A cascade per block.

Type B. One of the cascade rotations involves a pair of nodes belonging to a single
block, but not all of the nodes of the cascade are in that block: If the cascade rotates an
edge that lies on the left path of some block, then the length of the left path of the block
decreases by at least 1. Alternately, if the lowest three nodes involved in the cascade are
from the same block, then the number of nodes in that block whose left depth is at most

1 increases. We conclude that the number of Type-B cascades falling under the above

www.manaraa.com

3.2. COUNTING TWISTS, TURNS, AND CASCADES 51

categories is at most 2K (1) — Kx—_2(|k/2]). In every remaining Type-B k-cascade, only
the lowest cascade rotation is intrablock and the lowest three nodes do not belong to
the same block. Each such cascade behaves like a Type-C cascade in that it causes a

(k — 2)-cascade on the global tree (defined below) which accounts for it.

Type C. Each cascade rotation involves a pair of nodes belonging to different blocks:
In this case for each block, in addition to the root of the block, we also label the left child
of the root within the block global, if it exists; if the root has no left child, then the right
child of the root is labeled global. Right rotations are propagated from the original tree
to the global tree as described in Lemma 3.4 except in the following situation: When
the edge joining the root and its left child, say [, in a block is rotated, the left child of [,
say ll, now becomes global, and if I/ is not adjacent to [in B, this results in a series of
right single rotations on the global tree (See Figure 3.6). Under this definition of global
tree, the (k — 2) interior rotations performed by any Type-C k-cascade are all global.
Hence, each Type-C k-cascade translates into a right (k — 2)-cascade and a sequence of
right single rotations on the global tree. Therefore the total number of k-cascades in the

sequence is at most
I(k_g(tk/QJ)/2 + QI(k(l) — I(k_g(tk/QJ) + Ck_g([(k_g(tk/QJ)) < 4I(k(1).

This completes Case 2 in the proof of Lemma 3.4 for cascades. Case 3 is handled similarly.

g

3.2.2 Lower Bounds

The lower bound right twist sequences are inductively constructed by mimicking the
divide-and-conquer strategy used to derive the upper bounds. The lower bound sequences
always transform a left path tree into a right path tree. The tree is partitioned into a
collection of vertex-disjoint block trees and a global tree is formed by selecting nodes
from each block tree. The lower bound sequence for a tree is constructed by inductively
constructing similar lower bound sequences for the block trees and for the global tree and
weaving these sequences together. Actually, we first inductively construct a sequence of
right twists as well as deletions having sufficiently many rotations of the given type and

then remove the deletions to obtain the lower bound sequence.

We need some definitions. For all positive integers k., a right k-twist-deletion sequence

www.manaraa.com

52 CHAPTER 3. THE DEQUE CONJECTURE

The original tree

*
*

The global tree

N

Figure 3.6: The effect of a right single rotation involving the root of a block and its left
child within the block on the global tree. Circles denote the nodes of the block; other
symbols denote the nodes from other blocks. The starred nodes in the original tree are
the global nodes.

www.manharaa.com

3.2. COUNTING TWISTS, TURNS, AND CASCADES 53

is defined to be an intermixed sequence of right single rotations, right k-twists and
deletions of the leftmost node performed on a binary tree. Right k-turn-deletion sequences
and right k-cascade-deletion sequences are defined analogously. Consider a right twist
that is performed on some left subpath zg — 21 — - -+ — x; of a binary tree, where zq is
the lowest node on the subpath. zg is called the base of the twist. If x; is the left child
of a node y (say) in the tree, then the twist is called an apez twist and y is the apex of
the twist. Otherwise, the twist is called apezless.

The lower bound for T'wg(n) for n of the form Li(j) = (k —I_i B 1) is given by:

k-1

Lemma 3.5 Twi(Li(j)) > (1

)forallkZl and j > 1.
Proof. For any pair of positive integers k and j, we inductively construct a right k-

twist-deletion sequence for a left path tree of Li(j) nodes having the following properties:

1. The sequence deletes all the nodes from the tree.
2. A right k-twist always involves the leftmost node of the tree.

3. A deletion always deletes the root of the tree.

ktj—1

K1) k-twists.

4. The sequence has exactly (

The removal of the deletions from the sequence would yield a right twist sequence having

the desired number of k-twists.
Case 1. k=1or j = 1: Easy.

Case 2. k > 2 and j > 2: Divide the left path tree into a lower block of size Ly_1(j)
and an upper block of size Li(j — 1). Recursively perform a right (k — 1)-twist-deletion
sequence, say 5‘, on the lower block tree. For each (k—1)-twist in 5‘, first rotate the edge
joining the root of the lower block with its parent and then perform the (k — 1)-twist on
the block. This is equivalent to a k-twist involving the leftmost node of the tree. Fach
deletion in 5 is modified by first making the deleted node the root of the tree using right

rotations and then deleting the node. By property 4 of 5‘, the number of (k — 1)-twists
R

in 5 is exactly (1

). The initial depth of the root of the lower block equals

www.manaraa.com

54 CHAPTER 3. THE DEQUE CONJECTURE

k
the lower block by 1 and no other operation in 5 affects the depth, it is always possible to

Li(j-1)= (k T 2). Since each (k — 1)-twist in § reduces the depth of the root of

rotate the root of the lower block just before the execution of any (k —1)-twist in . The
construction is completed by recursively performing a right k-twist-deletion sequence,

say S, on the upper block.

The sequence obviously satisfies properties 1-3. The total number of k-twists per-

formed by the sequence equals

(the number of (k — 1)-twists in 5) + (the number of k-twists in §)

[k+j-2 k+57-2 . . .
= (L) + ([) (By the induction hypothesis)

B k+3-1
B E+1)
This proves property 4. O
Combining Lemma 3.1a with the above lemma yields:

Theorem 3.4 Twy(n) > n'*'/%/2e — O(n) for allk > 1 andn > 1. O

We construct the lower bound sequences for turns. As in the upper bound proof, we

need a new Ackerman-like hierarchy of functions. Define:

Bi(j) = j forallj>1

By(j) = 2 —1 forallj>1
Bi(j) = 1 ifi>3and j=1
AT YV (4 1B = 1)+ D)Bia((i+ 1)jBi(j — 1)) ifi >3 and j > 2

The function B; grows essentially at the same rate as the Ackerman function ALi/QJ:

Lemma 3.6 [. Bs(j) < Agz)(Qj), forall j > 1.

2. Bi(j) < AU/QJ (3j) foralli #3 and j > 1. O
The lower bound for T'ug(n) for n of the form By(j) is given by:

Lemma 3.7 Tui(Br(j)) > (1/2)(j — 3)Br(j) for all k > 1 and j > 1.

www.manaraa.com

3.2. COUNTING TWISTS, TURNS, AND CASCADES 55

Proof. For any pair of positive integers k& and j, we inductively construct a right
k-turn-deletion sequence for the left path tree of By(j) nodes having the following prop-

erties:

1. The sequence deletes all the nodes from the tree.
2. A right k-turn always involves the leftmost node of the tree.
3. A deletion always deletes the root of the tree.

4. The sequence comprises at least (1/2)(j —3)By(j) apex k-turns. Further, if k& > 3,

there are no apexless k-turns in the sequence.
5. For any node z, the number of apex k-turns with base z is at most j.

6. For any node z, the number of apex k-turns with apex z is at most j.

Case 1. k = 1: The sequence repeatedly rotates the leftmost node to the root and
deletes it.

Case 2. k = 2: Divide the left path tree into a lower left subpath comprising 2771 —1
nodes, a middle node, and an upper left subpath comprising 2~' — 1 nodes. Recursively
perform a right 2-turn-deletion sequence on the lower subpath. Modify each deletion in
this sequence as follows: Perform a 2-turn on the subpath defined by the deleted node,
say x, its parent (the middle node), and its grand parent; make 2 the root of the tree
by successively rotating the edge joining it and its parent; delete from the tree (this
also deletes 2 from the lower subpath.) Next, delete the middle node which is currently
the root of the tree. Finally, recursively perform a right 2-turn-deletion sequence on the

upper subpath (See Figure 3.7).

This sequence performs (j — 2)2j_1 + 1 2-turns of which exactly j — 1 are apexless.
Therefore the number of apex 2-turns is at least (j — 3)2/=! > (1/2)(j — 3)Ba(j). This

proves property 4. The remaining properties are easy to check.

Case 3. k> 3 and j = 1: Just delete the only node in the tree.

Case 4. k >3 and j > 2: Let s = (k+ 1)jBr(j — 1). We inductively construct the

sequences of operations performed on the block trees of the tree:

www.manaraa.com

56 CHAPTER 3. THE DEQUE CONJECTURE

/- '

/72071 a
- S
/:(Recurse on - " I %jf
right 2-turn r.rotations
Al

Recurse on

/<> the subpath

of circles T -
o ¥ -1 N .
O °.
r.2-turn;
r.rotations

3 o

‘. Recurse on . 5:)

\() the subpath 9i-1 _ 3)
\] of ellipses a
= - e e =

/
. “\O/

=
= -

2i-1_3 o

N

j=
-
O

Figure 3.7: The lower bound construction for right 2-turns. The construction recursively
transforms a left path tree of size 27 — 1 into a right path tree.

www.manharaa.com

3.2. COUNTING TWISTS, TURNS, AND CASCADES 57

Lemma 3.8 There exists a right k-turn-deletion sequence for a left path tree of size s+1

satisfying properties 1 and 2 and the following properties:

3. A deletion that is not the last operation in the sequence always deletes the left child
of the root.

4. The sequence comprises at least (1/2)(j — 4)s + j right k-turns all of which are apex

turns.
5. For any node x, the number of apex k-turns with base x is at most j — 1.

6. For any node x, the number of apex k-turns with apex x is at most j — 1.

=2

The root of the tree is always the rightmost node.

Proof. Divide the nodes of the tree excluding the root into a sequence of (k + 1)j
blocks of size By(j—1) each. Perform a right k-turn-deletion sequence obeying properties
1-6 on the lowest block. (The inductive hypothesis implies the existence of such a
sequence.) Denote this sequence by 5. Each deletion in S except the last is modified by
rotating the deleted node up the tree until it is adjacent to the root and then deleting
it. The deletion of the last node in the block, say x1, is implemented differently. zq is
rotated up the tree until it is in contact with the root of the next higher block, say 5.
T is rotated upwards in a similar fashion in order to make it adjacent to the root of the
next higher block, say z3. In this manner we create a left subpath 21 — 29 — -+ — 2341
containing the roots of the lowest k£ + 1 blocks. Next, a right k-turn is performed on this
subpath and then z; is rotated up the tree and deleted. Following this, 5 is executed
on the blocks of nodes zg,23..., 2541 in succession. ach deletion is modified by first
making the deleted node adjacent to the root and then deleting it. At the conclusion of
this sequence of operations, all the nodes in the lowest k£ + 1 blocks of the tree have been
deleted and at least (1/2)(j —4)(k+ 1)Br(j — 1)+ 1 apex k-turns have been performed.
The above sequence of operations is repeated on each group of £+ 1 consecutive blocks,
choosing the lowest group of blocks currently in the tree each time. The final operation

of the sequence deletes the root.

It is obvious that the right k-turn-deletion sequence constructed above satisfies prop-

erties 1,2,3 and 7. Since there are j groups of k + 1 blocks each, the total number of

www.manaraa.com

58 CHAPTER 3. THE DEQUE CONJECTURE

apex k-turns executed by the sequence is at least (1/2)(j—4)s+ j. Further, by property
4 of S, the sequence performs only apex k-turns. This proves property 4. Properties 5

and 6 are easy to show using properties 5 and 6 of sequence 5. O

We construct a right k-turn-deletion sequence for the left path tree of size By(j)
satisfying the six properties. The tree is partitioned into Bj_2(s) blocks of size s + 1
each. The root of each block is labeled global. The global nodes form a global tree as
described in the proof of Lemma 3.4. By the induction hypothesis, there exists a right
(k — 2)-turn-deletion sequence, say S, for the global tree, satisfying properties 1-6. We
construct the right k-turn-deletion sequence, denoted §, for the original tree by mapping
each global tree operation in S onto a sequence of original tree operations, preserving the
correspondence between the two trees. The following invariants define the relationships

between the two trees:

A. Let B denote the block containing the leftmost node of the tree and let z denote
the root of B. Suppose that d nodes have been deleted from B so far. Then,

i. The number of apex (k — 2)-turns performed so far on the global tree that

had x as their base is exactly d.

ii. Denote by S the right k-turn-deletion sequence constructed by Lemma 3.8
that deletes all the nodes from the left path tree of size s + 1. Let T" denote
Jth

the tree that results when the prefix of 5 up to the deletion is executed

on the left path tree. The block tree of B equals T'.

B. Consider any block B that does not contain the leftmost node of the tree. Let x
denote the root of B. The block tree of B is a left path tree which is divided into
the root and two subpaths. The nodes in the lower subpath, called black nodes,
are the nodes in B that have participated in a k-turn. The nodes in the upper

subpath are called white nodes.

i. If b denotes the number of black nodes currently in B, then exactly b of the

apex (k — 2)-turns performed so far on the global tree had z as their apex.

C. If x is a global node with a right child y in the global tree, y is also the right child

of z in the original tree.

www.manaraa.com

3.2. COUNTING TWISTS, TURNS, AND CASCADES 59

D. If 2 is a global node with a left child y in the global tree, there is a left subpath
r=29— %1 —...— Zpy1 = y in the original tree such that z1,2,,...,2; are the

set of white nodes in the block of z.
Fach global tree operation in S is simulated as follows:

Right rotation: Suppose that a global tree edge [z, 3], such that y is a left child of z,
is rotated. In the original tree we repeatedly rotate the edge connecting y and its
parent until z becomes the right child of y. Only invariants C and D are affected
by the rotations. It is not hard to see that both these invariants are true after the

last rotation.

Deletion: Suppose that a global node is deleted. Since z is the root of the global tree,
it is also the root of the original tree. Let d denote the number of nodes deleted so
far from the block of z. We perform s (the sequence constructed by Lemma 3.8)
on the block tree of z starting immediately after the d'h deletion. Fach deletion is
modified so that the deleted node is first made the root of the tree and then deleted.
Invariant A.ii ensures that this is valid and that this will result in the deletion of
all the nodes in the block of z from the tree. Therefore this sequence of operations

reestablishes the correspondence between the global tree and the original tree.

Apexless (k — 2)-turn: Break up the turn into a sequence of k£ — 2 global rotations and

simulate each global rotation as specified above.

Apex (k — 2)-turn: Suppose that a global tree subpath 21 — 23 — -+ - — z_1 is turned
and that z; is the base of the turn. Let zg denote the leftmost node in the block of
x1 and let x} denote the parent of z;_1 in the original tree. We create the subpath
xg— &1 — ... — &} in the original tree and perform a k-turn on this subpath. This

is implemented as follows:

1. Let d denote the number of nodes deleted so far from the block of 1. Exe-
cute the segment of sequence S between the d*h and the (d+ 1)54E deletions

(excluding the deletions) on the block tree of z1. By Lemma 3.8, property 3,
this makes node g the left child of ;.

2. Rotate z1 up the tree until its parent is z5. Continuing in this fashion, rotate

the nodes x4, 23, ...,2,_1 upwards, creating a left subpath zg — 2y — -+ - — 2.

www.manaraa.com

60 CHAPTER 3. THE DEQUE CONJECTURE

3. Perform a k-turn on the subpath zg — 2y — - -+ — 2.
4. Rotate zg up the tree, making it the root, and delete it.

5. Since zj has become black due to the k-turn, the edge joining x; and its left

child is repeatedly rotated until the left child of zj is not a global node.

Invariant B.i and property 6 of § guarantee that z is white at the beginning of this
sequence of operations. Similarly, invariant A.i and property 5 of S guarantee that

xg is well defined. Observe that all invariants are true at the end of the simulation.

The sequence of operations performed on the original tree during the simulation of §

constitutes sequence 5.
S deletes all the nodes in the original tree since S deletes all the nodes in the global
tree. This proves that 5 satisfies property 1.

Properties 2 and 3 of S are apparent from the simulation procedure.

By Lemma 3.8, at least (1/2)(j — 4)s + j apex k-turns (local turns) are performed
during the execution of S on any particular block. Hence the total number of local turns
summed over all blocks is at least (1/2)(j—4)sBr_2(s)+jBr—2(s). The number of turns
involving global nodes (global turns) equals the number of (k — 2)-turns in S which, by
the induction hypothesis, is at least (1/2)(s — 3)Bg_2(s). Therefore the total number of

k-turns in S is at least

(1/2)(J = 4)sBr—a(s) + jBr-2(s) + (1/2)(s = 3) By—2(s)
= ((1/2)(J = 3)s +J = (3/2)) Br-a(s)
> (1/2)(5 = 3)Br(J)-

Evidently, every k-turn in S5 has an apex. This proves property 4.

For any node z, there is at most one global turn with z as the base since z is deleted
from the tree immediately after the turn. By Lemma 3.8, there are at most 7 — 1 local

turns with = as the base. We conclude property 5. Property 6 is proved analogously. O
Combining the above lemma with Lemma 3.1b yields:

Theorem 3.5

(1/12)710?%/% (n)—O0(n) ifk+#3

Tur(n) 2 { (1/8)nloglogn — O(n) ifk=3 O

www.manaraa.com

3.2. COUNTING TWISTS, TURNS, AND CASCADES 61

The lower bound for cascades is given by:
Theorem 3.6

Ci(n) > { (1/12)nd 1 19| (n) = O(n) if k # 3
— | (1/8)nloglogn — O(n) ifk=3

Proof. We modify the lower bound proof for Tui(n) given above. Define:

Bi(j) = j forallj>1
By(j) = 3.22-2 forallj>1
o= 1 ifi>3and j=1

N (4ijBl(j — 1)+ 3)B/_,(4ijBi(j—1)) ifit>3andj>2
It is easy check that Lemma 3.6 holds for the new hierarchy { B/}. We prove the analogue
of Lemma 3.7 for C(n), which states that Cy(B(j)) > (1/2)(j — 3)B.(j) for all k > 1
and 7 > 1. We construct a right k-cascade-deletion sequence that converts a left path
tree of size B} (j) into a right path tree and satisfies the analogues of properties 1-6 for

cascades.
Case 1. k=1or j = 1: Easy.

Case 2. k = 2: Divide the left path tree into a lower subpath and an upper
subpath, each having 3.27~' — 2 nodes, and two middle nodes. The right 2-cascade-
deletion sequence is constructed by recursing on the lower and upper subpaths in turn
and performing a 2-cascade involving the deleted node and the middle nodes for each
deletion in the first recursive step. The sequence comprises (35 — 4)2j_1 -74+2 >

(1/2)(3.27 — 2)(j — 3) apex 2-cascades and satisfies all the properties.

Case 3. k>3 and j > 2: Let s = 4kjBj(j — 1). A p,q-zigzag tree is a tree that is
constructed from a p-node left path tree by inserting a g-node left path tree as the right
subtree of the leftmost node. We extend Lemma 3.8 to cascades and construct a right
k-cascade-deletion sequence, say S, for a 3, s-zigzag tree that comprises (1/2)(j—4)s+2j
apex k-cascades. Each deletion in the sequence, except for the last two deletions, deletes
the leftmost grandchild of the root. The proof divides the tree into 2j groups of 2k
blocks each, each block, in turn, of size B} (j — 1), and recursively performs a right k-
cascade-deletion sequence on each block, choosing the blocks in bottom-to-top order. A
k-cascade is performed on the roots of the blocks within each group, yielding 25 extra

cascades.

www.manaraa.com

62 CHAPTER 3. THE DEQUE CONJECTURE

The tree is partitioned into Bj_,(s) blocks of size s 4+ 3 each. The global tree is
constructed from the roots of the blocks and a right (k — 2)-cascade-deletion sequence,
say S, satisfying properties 1-6 is recursively performed on it. The simulation of $ on
the original tree maintains the invariants A (with expression s 4 3 replacing s + 1), C

and D and the following modification of invariant B:

B. Consider any block B that does not contain the leftmost node of the tree. Let z
denote the root of B. Block B induces a connected subtree in the original tree.
Further, if exactly b of the (k — 2)-cascades performed so far on the global tree
had 2 as their apex, then the block tree of B is a (s — b + 3), b-zigzag tree.

The simulation of global tree operations other than apex (k — 2)-cascades is as before.
Consider an apex (k—2)-cascade in S involving a global tree subpath 1 —29—---—295_4,
such that zq is the base of the cascade. Let 31 and yo denote, respectively, the leftmost
node in the block of z; and the left child of 1. Let z; and zy denote, respectively,
the parent and the grandparent of z9;_4 in the original tree. The global tree cascade is
simulated on the original tree by creating the subpath yy —ys—21—29—- - —2op_4—21— 29
in the original tree, performing a k-cascade on this subpath, and finally deleting y; from

the tree. We verify that the resulting sequence, say 5, satisfies property 4:

k-cascades in S = # local cascades + # global cascades
((1/2)(j = 4)s + 2§) Br_(s) + (1/2)(s — 3) By _5(s)
(1/2)(J = 3)Br(J)-

v

vV

The rest of the properties of 5 are easy to check. This completes the proof of Lemma 3.7

for cascades. The theorem follows. O

3.3 An Upper Bound for the Deque Conjecture

In this section, we show that Splay takes O((m+n)a(m+n)) time to process a sequence
of m deque operations on an n-node binary tree. We reduce a deque operation sequence

to right cascade sequences on auxiliary trees and apply the upper bounds for cascades.

Define the cost of a deque operation or a right twist operation to be the number of

single rotations performed by the operation.

www.manaraa.com

3.3. AN UPPER BOUND FOR THE DEQUE CONJECTURE 63

The cost of a set of right cascades in a right twist sequence is given by:

Lemma 3.9 Consider an arbitrary right twist sequence executed on an n-node binary

tree. The total cost of any m right cascades in the sequence equals O((m+n)a(m+n,n)).

Proof. Let [= 2a(m + n,n) + 2. Split each of the m right cascades into a sequence
of right [-cascades followed by a sequence of at most [— 1 rotations. By Theorem 3.3,
the total number of right [-cascades is at most 8na 11/2] (n). This yields a bound of
(m + 8nd 112 (n))l for the number of rotations performed by the m right cascades. We
bound dU/QJ (n) as follows:

Aa(m+n7n)+1(tm/nJ +2) Aa(m—|—n,n)(Aa(m+n,n)+1(Lm/nJ +1))
Al(Aoz(m-I-n,n)(L(m + n)/nJ))

n.

v

v

Therefore dU/QJ (n) = Ga(minmyt1(n) < [m/n] 4+ 2. The lemma follows. O

Remark. Hart and Sharir [19] proved a result similar to Lemma 3.9 concerning
sequences of certain path compression operations on rooted ordered trees. Their result
can be derived from the analogue of Lemma 3.9 for turns by interpreting turns in a
binary tree as path compressions on the rooted ordered tree representation of the binary
tree. It is interesting that they also use ideas similar to blocks and global tree in their

proof.

We estimate the cost of a sequence of deque operations performed at one end of a

binary tree that also has left and right path rotations:

Lemma 3.10 Consider an intermized sequence of Pors, PUusHs, left path rotations and
right path rotations performed on an arbitrary n-node binary tree. The total cost of Popr
operations equals O((m +n)a(m+n)), where m denotes the number of Pops and Pusts

in the sequence.

Proof. We simplify the sequence through a series of transformations without under-

counting Pop rotations.

Simplification 3.1 The first operation of the sequence is a Pop.

www.manaraa.com

64 CHAPTER 3. THE DEQUE CONJECTURE

Transformation. Delete the operations preceding the first PoP from the sequence

and modify the initial tree by executing the deleted prefix of the sequence on it. O
Simplification 3.2 The sequence does not contain PUSH operations.

Transformation. For each PUusH operation, insert a node into the initial tree as
the symmetric order successor of the last node that was popped before the PusH. The
PusH operation itself is implemented by just rotating its corresponding node to the root

through right rotations. O

Define a PARTIALPOP to be a sequence of arbitrarily many right 2-turns performed

on the leftmost node of a binary tree followed by deletion of the node.

Simplification 3.3 The sequence consists of only PARTIALPOPS and left path rotations;
the lemma is true if the total cost of PARTIALPOP operations equals O((m+n)a(m+n)),
where m denotes the number of PARTIALPOPSs in the sequence and n denotes the size of

the initial tree.

Transformation. Normalize the tree by rotating the nodes on the right path across

the root into the left path and consider the resulting sequence. O

Simplification 3.4 The sequence comprises only right cascades; the lemma is true if

the total cost of any m cascades in the sequence equals O((m + n)a(m 4 n)).

Transformation. Instead of deleting nodes at the end of PARTIALPOPS, rotate them

upwards to the right path. O
The lemma follows from Simplification 4 and Lemma 3.9. O

The upper bound for the Deque Conjecture is given by:

Theorem 3.7 The cost of performing an intermized sequence of m deque operations on

an arbitrary n-node binary tree using splay equals O((m + n)a(m + n)).

Proof. Divide the sequence of operations into a series of epochs as follows: The
first epoch comprises the first max{|n/2],1} operations in the sequence. For all 7 > 1,

if the tree contains k nodes at the end of epoch ¢, then epoch 7 + 1 consists of the

www.manaraa.com

3.4. NEW PROOFS OF THE SCANNING THEOREM 65

next max{|k/2],1} operations in the sequence. The last epoch might consist of fewer
operations than specified. It suffices to show that the cost of an epoch that starts with
a k-node tree is O(ka(k)), since the sum of the sizes of the starting trees over all epochs
is O(m + n).

Consider an epoch whose initial tree, say T, has k& > 2 nodes. Divide T into a left
block of |k/2| nodes and a right block of [k/2] nodes. This partitioning ensures that
neither block gets depleted before the epoch completes. The total cost of PusHs and
INJECTS is 0, since only rotations contribute to the operation cost. We show that the

total cost of Pops is O(ka(k)). The same proof will apply to EJecTs.

A Pop on T translates into a PoP on the left block. The effect of a Pop on the right
block is a series of left path rotations. It is easy to see that the total number of single

rotations performed by a POP is at most

(the number of single rotations performed by the Pop on the left block) +

2(the number of left path rotations performed on the right block) + 2.

A PusH operation on the tree propagates as a PUsH on the left block. An EJjecT
performs only right path rotations on the left block. An INJECT does not affect the left
block. Hence by Lemma 3.10, the total number of single rotations performed by all the
Pors on the left block equals O(2|k/2|a(2]k/2])) = O(ka(k)). A left path rotation
on the right block decreases the size of the left path of the block by 1. The initial size
of this path is at most [k/2] and the size increases by at most 1 per deque operation.
Therefore the total number of left path rotations performed on the right block due to
Pops is at most k + 1. This leads to an O(ka(k)) upper bound on the total cost of all
the Pops performed during the epoch. O

3.4 New Proofs of the Scanning Theorem

In the two subsections of this section, we describe a simple potential-based proof of the

Scanning Theorem and an inductive proof that generalizes the theorem.

www.manaraa.com

66 CHAPTER 3. THE DEQUE CONJECTURE
3.4.1 A Potential-based Proof

The proof rests on the observation that a certain subtree of the binary tree, called the
kernel tree, which is mainly involved in the splay operations always has a very nice
shape. As the nodes of the original tree are accessed using splays, the kernel tree evolves
through insertions and deletions of nodes at the left end, and left path cascades caused
by the splays. Fach node of the kernel tree is assigned a unimodal potential function,
that is, a potential function that initially steadily increases to a maximum value and
then steadily decreases once the node has progressed sufficiently through the kernel tree.
The nice shape of the kernel tree guarantees that most of the nodes involved in each
splay are in their potential decrease phase, enabling their decrease in potentials to pay
for all the rotations and the small increase in potentials of the nodes in their potential

increase phase.

We need some definitions. A binary tree is called rightist if the depths of the leaves
of the tree increase from left to right. The left and right heights of a binary tree are
defined, respectively, to be the depths of the leftmost and rightmost nodes. The right
inner height of a node x is defined to be the depth of the successor of within z’s subtree

if has a right subtree and 0 otherwise.

We are ready to describe the proof. At any time during the sequence of splays,
the set of nodes in the current tree that have been involved in a splay rotation form a
connected subtree of the tree, called the kernel tree, whose root coincides with the root
of the right subtree of the tree. Initially, the kernel tree is empty. The sequence of splays
on the the original tree propagates into an intermixed sequence of n PUsHs and n PoPs
on the kernel tree, where a PUsH inserts a new node at the bottom of the left path of
the tree and a Pop splays at and deletes the leftmost node of the tree. Our goal is to
show that the cost of the sequence of operations on the kernel tree equals O(n). The

theorem would then follow immediately.

The argument focuses on the sequence of operations on the kernel tree. Since the
kernel tree is created by a sequence of PusHs and Pops, it satisfies the following two

properties:
1. The subtrees hanging from the left and right paths of the tree are rightist.

2. If Ty and T are subtrees hanging from the left path with 77 to the left of T5, then

www.manaraa.com

3.4. NEW PROOFS OF THE SCANNING THEOREM 67

rightheight(7) < leftheight(73).

This can be easily shown using induction.

We use the following potential function. The potential of the kernel tree equals the
sum of the potentials of all its nodes. The potential of a node consists of an essential
component and a nonessential component. For any node z, let [d(z) and rih(z) denote,
respectively, the left depth and the right inner height of . The essential potential of z
equals min{[logld(z)|,rih(z)} unless z is on the right path in which case its essential
potential equals 0. The essential potential of a node is a unimodal function of time,
since the potential first monotonely increases from 0 until the node’s right inner height
overtakes the logarithm of its left depth and then monotonely decreases. The nonessential
potential of z equals 2 units if = is not on the right path and z’s left child has the same

right inner height as x, and equals 0 otherwise.

We compute the amortized cost of kernel tree operations. PUsH has amortized cost
2, to provide for the nonessential potential that may be needed by the parent of the
inserted node. Consider a PopP. Let z denote the lowest node on the left path such
that [logld(z)] < rih(z). Every double rotation of a splay step that involves two
nodes with identical right inner heights is paid for using the nonessential potential of
the node leaving the left path. The number of remaining double rotations is at most
|ld(z)/2] + [log(ld(z)+ 1)]. The first term accounts for the double rotations involving
two proper ancestors of & and the second term accounts for the double rotations involving
the descendents of . Fach latter category rotation increases the potential by at most
1, contributing to a net increase of at most [log({d(x)+ 1)] units of potential. The
halving of the left depths of the ancestors of z caused by the splay operation decreases
the potential by exactly ld(z)— 1. The amortized cost of Pop is therefore bounded by

|1d(2)/2] + 2[log(ld(z) + 1)] — (ld(z) — 1) < 5.

We conclude that at most 7n double rotations, hence at most 15n single rotations,
are performed by the sequence of operations on the kernel tree. This proves the Scanning

Theorem.

www.manaraa.com

68 CHAPTER 3. THE DEQUE CONJECTURE
3.4.2 An Inductive Proof

In this section, we describe an inductive proof of a generalization of the Scanning The-
orem. The proof technique is similar to the method used to derive the upper bounds in
Section 3.2.1. The binary tree is partitioned into blocks of constant size so that the total
number of single rotations within blocks is linear. The induction is applied to a global
tree consisting of a constant fraction of the tree nodes. Since a splay on the original tree
translates into a much weaker rotation on the global tree, we have to incorporate the

strength of the rotations into the inductive hypothesis.

We state the result. For any positive integer & and real number d, such that 1 <
d < n, a right k-twist is called d-shallow if the lowest node involved in the twist has a
left depth of at most dk. Let S(¥)(n) denote the maximum number of single rotations
performed by d-shallow right twists in any right twist sequence executed on an n-node
binary tree. We prove that S(Y(n) = O(dn). The Scanning Theorem follows from
S@(n) = 0(n).

We estimate the number of d-shallow right twists in a right twist sequence:

Lemma 3.11 For any d > 1, the total number of d-shallow right twists in any right

twist sequence is at most 4dn.

Proof. Consider any d-shallow right twist that rotates a sequence of edges, say
[z1, 1], [x2,92], -+ [Tk, Uk], such that the left depths of the sequence of nodes xj, v,
Th—1, Yk—1, - - - 1, Y1 18 nonincreasing. Let [d(z) and [d'(z) denote, respectively, the left

depths of any node z before and after the twist. For all 7 € [[k/2], k], we have

ld'(z;) i i 1
—1- <l-l<io—.
ld(z;) d(z) = k-2

In order to pay unit cost for a twist, we charge each node z;, such that 7 € [[k/2], k],
min{2d/ld(x;),1} debits. Let us prove that the total charge is at least 1. If ld(gv(k/ﬂ) <
2d, then k2] is charged 1 debit. Otherwise, we have 1 > 2d/ld(z;) > 2/k for all
i > [k/2]. Since |k/2]| 4+ 1 nodes are each charged at least 2/k debits, the net charge to

all the nodes is at least 1.

Now, we bound the total charge to a node over the entire sequence. Call a node deep

if its left depth is greater than 2d and shallow otherwise. Suppose that a node receives

www.manaraa.com

3.4. NEW PROOFS OF THE SCANNING THEOREM 69

a sequence of charges 2d/Ly,2d/Ly_1,...,2d/ Lo while it is deep. Then

2d

T

for all ¢ > 0.
Therefore the total charge to a node while it remains deep is at most
(1—1/2d)" + (1 —1/2d) " -+ 1< 2d.

A node receives at most 2d debits while it is shallow. This implies that any node is
charged at most 4d debits, giving a bound of 4dn for the total number of d-shallow right
twists. O

The upper bound for S(d)(n) is given by:
Theorem 3.8 S(d)(n) < &7dn for alld > 1 and n > 1.

Proof. The proof uses induction on n.

n
2

Case 2. n > 174d: Divide the tree into a sequence of [n/K] blocks such that each

Case 1. n < 174d: S(d)(n) < () < 87dn.

block except the first contains exactly K = 29d nodes. The first block may contain fewer
nodes. In each block except the first, the nodes with preorder numbers 1 to 4d within
the block are global. The first block does not contain any global nodes. Notice that the
global nodes of a block form a connected subtree within the block whose root coincides
with the root of the block. Further, if the left path of the block contains more than 4d
nodes then all global nodes lie on the left path of the block. Otherwise all nodes on the
left path of the block are global. The global nodes in the tree form a global tree as in

the previous upper bound constructions. The size of the global tree is at most n/7.25.

We analyze the effect of a original tree rotation on the global tree. An interblock
right single rotation translates into a corresponding rotation on the global tree if both
nodes of the rotation are global. Otherwise the global tree is not affected. The analysis

of an intrablock right single rotation involves the following cases:

Local-local: The global tree is unaffected.

Local-global: Again, the global tree is not affected, but the global role is transferred
from the global node to the local node.

www.manaraa.com

70 CHAPTER 3. THE DEQUE CONJECTURE

Global-global: Let [z, p] denote the rotated edge such that p is the parent of z. If
the left subtree of within the block contains only global nodes, then the rotation
simply propagates to the global tree. Otherwise, p’s global role is transferred to the
node, say z’, in p’s block that had preorder number 4d + 1 initially. Let p’ denote
the lowest ancestor of z’ in the original tree which is global. The effect of the
transfer of global role on the structure of the global tree is to contract edge [z, p]
and add a new edge [2',p']. We show that the same transformation is realizable
through a series of right single rotations in the global tree. These rotations are
performed by traversing the path from p to p’ in the global tree as follows (See
Figure 3.8):

Start at edge [p, 2] and repeat the following operation until the last edge
on the path is reached: If the next edge on the path is a left edge, move
to the next edge; otherwise, rotate the current edge and move to the
next edge after the rotation. Finally, if 2’ belongs to the right subtree of
p’ in the original tree, rotate the last global tree edge traversed.
Remark. The operation performs all the rotations within the sub-
tree of the global tree rooted at x. This is seen as follows. If x = p/,
then no rotations are performed on the global tree. Otherwise, p’ lies in
the left subtree of . Hence the successor of edge [p, z] on the global tree
path from p to p’ is a left edge. This implies that the operation does not
rotate edge [p, z]. Therefore all the rotations performed by the operation

occur in the subtree of the global tree rooted at z.

At any during this traversal, contracting the current edge results in a tree that is
identical to the tree obtained by contracting the edge [z, p] in the initial tree, so it
follows that the above series of rotations on the global tree correctly simulates the

rotation of edge [z, p].

In summary, a right single rotation of an edge [z, p], such that p is the parent of .,
either does not affect the global tree, or translates into a rotation of the edge [z, p] in
the global tree, or translates into a sequence of right single rotations on the subtree of
the global tree rooted at z. The rotation is called global if it results in a rotation of the

corresponding edge in the global tree and local otherwise.

www.manaraa.com

3.4. NEW PROOFS OF THE SCANNING THEOREM 71

The original tree

The global tree

Figure 3.8: The transfer of global role in an intrablock global-global rotation. Circles
denote the nodes of the block. The starred nodes of the original tree are the global
nodes.

www.manharaa.com

72 CHAPTER 3. THE DEQUE CONJECTURE

Consider the effect of a right twist in the original tree on the global tree. The sequence
of single rotations on the global tree caused by the right twist comprises [-rotations,
caused by local rotations in the twist, and g-rotations, caused by global rotations in the
twist. The nodes involved in any [-rotation are distinct from the nodes involved in any
previous g-rotation, hence we may transform the sequence of global tree rotations by
moving each [-rotation before all the g-rotations without altering the net effect of the
sequence on the global tree. The suffix of the sequence consisting of all the g-rotations
defines a global twist on the global tree. In summary, the effect of a right twist in the
original tree on the global tree is a right rotation followed by a global twist corresponding

to the subsequence of global rotations in the twist.

We estimate the number of single rotations performed by d-shallow twists in a right
twist sequence executed on the tree. Consider any d-shallow twist in the sequence. Define
the left path of the twist to be the left path resulting from the contraction of the right
edges on the access path of the lowest node involved in the twist. We classify the right

single rotations performed by the twist as follows:

Type 1. Local, interblock rotation in which the top node is global: There is at most
one Type-1 rotation per twist because the left subtree of the bottom node of the rotation

consists of only local nodes.

Type 2. Local, interblock rotation in which the top node is local: The top node
lies on the left path of its block and, since the node is local, it has 4d global ancestors
within the block that lie on the left path of the twist. Notice that the top nodes of
different Type-2 rotations belong to different blocks. Thus, if k; denotes the number of
Type-2 rotations performed by the twist, then the left path of the twist contains at least
(4d + 1)kq edges. Since the number of edges on the left path of the twist is bounded by
dk, we obtain that ko < [k/4].

Type 3. Local, intrablock rotation: For each Type-3 rotation, charge (8/3) debits
to the block in which the rotation is performed. If the number of Type-3 rotations is at
least (3k —4)/8, the total charges to the blocks plus a charge of (4/3) debits to the twist
itself pays for all the rotations performed by the twist.

Type 4. Global rotation: Only the situation where the number of Type-3 rotations

www.manaraa.com

3.4. NEW PROOFS OF THE SCANNING THEOREM 73
is less than (3k — 4)/8 needs to be considered. In this case at least
b= 1= k4] = (F(3k = 4)/8] = 1) = & — [b/4] — [(3k + 3)/8] > 3k/3

global rotations are performed. Therefore the global twist performs at least 3k/8 rota-
tions on the global tree, and it is (8d/3)-shallow. If we charge each such global twist
(4/3) times the actual cost, then all the rotations can be paid for. This is seen as follows.
Let ks and k4 denote, respectively, the number of Type-3 and Type-4 rotations. Then,
ks + k4 > 3k/4 — 1. The total charge is 8k3/3 + 4/3 + 4k4/3 which is minimized when
ks = 0. When k3 = 0, the total charge is at least 4/3 4 (4/3)(3k/4—1) > k.

Since each d-shallow twist is charged at most 4/3 debits, the total charge to all the
d-shallow twists is at most 16dn/3 by Lemma 3.11. The total charge to a block of
size s is at most 8(;) /3. It follows that the total charge to all the blocks is at most

AnK /3 < 116dn/3. By the inductive hypothesis, the total charge to all the (8d/3)-
shallow global twists is at most (4/3)(87)(8d/3)(n/7.25) = 128dn/3. Therefore the sum
total of all the charges is bounded by 16dn/3 + 116dn/3 + 128dn/3 < 87dn, completing
the induction step. O

www.manaraa.com

74 CHAPTER 3. THE DEQUE CONJECTURE

www.manharaa.com

Chapter 4

Testing Set Equality

The problem of maintaining a dynamic collection of sets under various operations arises
in numerous applications. A natural application is the implementation of high-level pro-
gramming languages like SE'TL that support sets and permit operations such as equality,
membership, union, intersection, etc. on them. The general problem of efficiently main-
taining sets under all of these operations appears quite difficult. This chapter describes a
fast data structure for maintaining sets under equality-tests and under creations of new

sets through insertions and deletions of elements®.

4.1 Introduction

The Set Fquality-testing Problem is to maintain a collection of sets over a finite, ordered

universe under the following operations:
o EqQuar(S,T): Testif S =1.
e INSERT(S,z,T): Create a new set 1'= S U {z}.

e DELETE(S,2,T): Create a new set T'= S\{z}.

The collection initially contains just the empty set. We would like to devise a data
structure for this problem that tests equality of sets in constant time and executes the

remaining operations as fast as possible, under this constraint.

!The work of this chapter was reported in a joint-paper with Robert E. Tarjan [31].

75

www.manaraa.com

76 CHAPTER 4. TESTING SET EQUALITY

If sets are represented by unique storage structures, then equality-testing of a pair of
sets can be implemented in constant time by just checking whether they are represented
by a single storage structure; uniqueness simply means that all the instances of a set
are represented by a single storage structure. Following this natural approach, several
people have devised unique storage representations for sets that allow constant time
equality-tests and can be updated efficiently. Wegman and Carter [35] gave a randomized
signature representation for sets that can be updated in constant time and constant
space but errs with a small probability during equality-tests. Pugh [26] and Pugh and
Tietelbaum [27] gave an error-free randomized binary trie representation for sets that
can be updated in O(logn) expected time and O(logn) expected space, where n denotes
the size of the updated set. Their data structures also support union and intersection of
sets, although less efficiently. Yellin [40] gave a deterministic binary trie representation
of sets that can be updated in O(log? m) time and O(logm) space, where m denotes the

total number of updates.

We devise a deterministic data structure for the Set Equality-testing Problem re-
quiring O(logm) amortized time and O(logm) space per update operation. The data
structure is based on a solution to a more fundamental problem involving S-expressions.
S-expressions [5] constitute the staple data type of programming language LISP. An
S-expression is either an atom (signifying a number or a character string) or a pair
of S-expressions. An atom S-expression is represented in storage by a node; a pair S-
expression is represented by a node with left and right pointers that point to nodes
representing the component S-expressions. We store S-expressions uniquely, i.e. all in-
stances of an S-expression are represented by a single node. CoONs(s1,52) returns the
S-expression (s1.s2). A cascade of CONSs operations is a sequence of CONs operations in

which the result of each CoONS operation is an input to the next CoNs operation. For

instance,
S81 = CONS(So,to)
Sy = CONS(Sl,tl)
Sf = CONS(Sf_l,tf_l)

is a cascade of f CoNs operations. The S-expression problem in question is to devise
a data structure for efficiently implementing cascades of CoNs operations on uniquely

stored S-expressions.

www.manaraa.com

4.1. INTRODUCTION 7

Unique storage of S-expressions makes CONS operations expensive. Given a pair
of S-expressions, a CONS operation has to check whether there is a third S-expression
in the collection with these S-expressions as its component S-expressions. Viewing the
collection of S-expressions as a dictionary, this is equivalent to performing a search
operation, possibly followed by an insertion, on the dictionary. Single CONS operations
can be implemented in O(y/log F') time and O(1) amortized space or, alternately, in
O(1) time and O(F) space, where F' denotes the total number of CoNs operations
performed and € is any positive constant. This implementation is based on Willard’s
data structure [37] for maintaining a dictionary in a small universe. Universal hashing
[8] and dynamic perfect hashing [13] offer alternate implementations that require O(1)

randomized amortized time and O(1) amortized space per CONS operation.

We develop a data structure that performs a cascade of f CoONs operations in
O(f + logm.) amortized time, where m. denotes the total number of cascades per-
formed. The total space used is proportional to the number of distinct S-expressions
present. This means that CoNs operations can be implemented in constant amortized
time and constant space in situations where these operations occur in long cascades.
Our set-equality-testing data structure is an immediate corollary of this result. When
sets are represented by binary tries, an update operation translates into a cascade of
at most log m CoNs operations and requires O(logm) amortized time using this data
structure. Many list-oriented functions in functional languages (LISP, for instance) in-
volve cascades of CONS operations and can be implemented efficiently using this method;

function APPEND is a typical example:

APPEND([v1, 02, ..., 0], (w1, we, ..., w]) =
$1 = Cons(vg, [wy, wa, ..., w]
S9 = CoNs(vg_1,51)

Result := Cons(vy,s5-1)

The chapter is organized as follows. In Sections 4.2 and 4.3, we describe the data
structure for equality-testing of sets and analyze its performance. In Section 4.4, we

discuss directions for further work.

www.manaraa.com

78 CHAPTER 4. TESTING SET EQUALITY

4.2 The Data Structure

We reduce the Set Equality-testing Problem to the problem of implementing cascades
of CONs operations on uniquely stored S-expressions. The elements seen so far are
numbered in serial order and define the current universe U = [1,|U]|]. Each set is
represented by a binary trie [21] in this universe. The binary trie representing a set
S is an S-expression that stores the elements of S as atoms and is defined recursively.
Let 27 < |U| < 2PtL. A singleton set is represented by an atom and the empty set,
by the atom NIL. If || > 2, then S is represented by a pair (s1.52), where s; and sy
are, respectively, the S-expressions representing subsets S N [1,2P] and S N[2F + 1, |U]]
in their respective subuniverses. We store S-expressions uniquely so that two sets are
equal if and only if their S-expressions are represented by a single node. A set update
operation translates into a cascade of at most log|U| < logm CoNs operations, which
can be implemented in O(logm) amortized time and O(logm) space using a method

described below; m denotes the total number of update operations.

We describe an efficient data structure for performing cascades of CONS operations
on uniquely stored S-expressions. The data structure requires O(f + logm.) amortized
time to perform a cascade of f CoNs operations, where m. denotes the total number of
cascades performed. Consider the collection of nodes representing S-expressions. Num-
ber these nodes serially in their order of creation. A parent of a node v is defined to
be a node that points to v. Fach node v maintains a set parents(v) of all its parents.
FEach parent p € parents(v) is assigned a key equal to (serial#(w),b), where w is the
other node (besides v) pointed to by p, and b equals 0 or 1 depending on whether the
left pointer of p points to v or not. To perform a CoNs operation on two nodes, v and
w, we search the set parents(v) using the key (serial#(w),0) and return the matching
parent. If there is no matching parent, we create a new node p with pointers to v and
w, set parents(p) to empty, insert p into parents(v) and parents(w), and return p. In a
cascade of CONS operations, we implement each CONS operation by searching in the set

of parents of the node returned by the previous CONs operation.

We represent each set parents(v) by a binary search tree and perform searches and

insertions on the tree using the Splay Algorithm?. A search operation is followed by a

?The Splay Algorithm is described in Chapter 3, Section 3.1.1.

www.manaraa.com

4.3. THE ANALYSIS 79

splay on the last-visited node during the search. A new element is inserted into the tree
as follows. If the inserted element is larger than the current maximum element, insert
it as the right child of the maximum element; this requires maintaining a pointer to the
rightmost node in the tree. Otherwise insert the element into the tree in the standard
top-down manner and then splay at the element. These two types of insertions are called
passive and active, respectively. We implement passive insertions more efliciently since

they are more numerous than active insertions.

4.3 The Analysis

The following theorem summarizes the performance of the data structure for CoONs

operations.

Theorem 4.1 The amortized cost of a cascade of f CONs operations equals O(f +

log m.), where m. denotes the total number of cascades performed on S-expressions.

The key idea behind the proof of this theorem is to bound the cost of operations on
a parent set using a strong form of Sleator and Tarjan’s Static Optimality Theorem [28].
We focus on the graph induced by the S-expression nodes, write the static optimality
expressions for all these nodes, and bound the sum of the static optimality expressions
over all the nodes, using the fact that S-expression nodes have at most two children (even

though they might have unboundedly many parents).

We state the lemmas used in proving the theorem. The following lemma uses the
notion of blocks in a binary tree introduced in Chapter 3, Section 3.2.1, and occurs

implicitly in the work of Cole et al. [11].

Lemma 4.1 Consider a binary search tree whose elements have been assigned arbitrary
nonnegative weights. Suppose that the tree is partitioned into blocks so that each block
has a positive weight (the weight of a block equals the total weight of all the elements in
it). Let n denote the number of elements in the tree and let ny denote the number of
blocks. The cost of a sequence of m splays performed on the roots of the blocks equals
O(m +n+ 372 log(W/w;) + 372 log(W/w;)), where W = the total weight of all the
elements, w; = the weight of the block of the jth accessed element, and w; = the weight

of the ith block of the tree.

www.manaraa.com

80 CHAPTER 4. TESTING SET EQUALITY

Proof. Assign potentials to the nodes of the tree as described by Cole et al. [11]
in Section 2, “Global insertions”, and analyze the splays using their analysis of global
insertions®. Their analysis yields the following conclusions: the amortized cost of a splay
on the root of a block with weight w equals O(1 +log(W/w)); the drop in potential over
the entire sequence equals O(3_7, log(W/@;) 4+ n). The result follows. O

The following lemma bounds the cost of the sequence of operations performed on a

single parent set and it is the key idea underlying the analysis.

Lemma 4.2 Consider a sequence of insertions and searches performed on an (initially

empty) binary search tree using splays. Let

fi = the number of searches of element 1,
F = the total number of searches,

n, = the number of active insertions, and
n = the total number of insertions.

The cost of this sequence equals O(n + nglogng + F + 3551 filog(F/ fi)).

Proof. We modify the sequence by preinserting all the elements into the initial tree
according to their order of arrival (without splaying). On this tree, we perform the
searches and simulate the insertions. Active insertions are simulated by splaying at the
corresponding elements and passive insertions are simply ignored. We obtain a sequence
of splays corresponding to active insertions and searches (active splays and hot splays,

respectively). It suffices to bound the cost of this sequence.

We bound the cost of this sequence by partitioning the tree into blocks and applying
Lemma 4.1. Partition the tree into blocks as follows. The elements accessed by active
and hot splays are, respectively, called active and hot. Every active or hot element
forms a singleton block. Each nonempty interval of nodes between consecutive singleton
blocks forms a passive block. Choose an element from each passive block and call it
the block representative. Note that n, = the number of active elements. The weight of

element 7 is defined by:

fi if the element is hot
F/(n,+ 1) if the element is active but not hot
0 if the element is in a passive block

but not the representative

®An account of this analysis can also be found in Cole [9], Section 4.

www.manaraa.com

4.3. THE ANALYSIS 81

The representatives of n,+1 of the passive blocks are each assigned a weight of F'/(n,+1);
the representatives of the remaining passive blocks are placed in one-to-one correspon-
dence with the set of hot elements and assigned the weights of their mates. The total

weight of the tree is at most 4F. Applying Lemma 4.1, the cost of the sequence of splays

equals
O(na + F+n+ > filog(4F/ fi) + nglog(4(ng + 1)) +
2() 1og5117/fi)) + (204 + 1) log(4(na + 1)) =
- O(n+ nglogng + F+ Y filog(F/f;)).
] fizl

Remark. The lemma is a strong form of Sleator and Tarjan’s Static Optimality
Theorem [28]. The term static optimality comes from the expression Y, f;log(F/f;)
which gives the weighted path length of the optimal static binary tree whose leaves have
weights f1, fo,..., fn. Their theorem applies only to sequences of searches in which all
the elements of the tree are accessed at least once. The use of Cole et al.’s sharper

analysis [11] yielded our stronger lemma.

The following graph inequality will help us to bound the sum of the static optimality
expressions over the nodes of the S-expression graph, using the fact that the nodes of

this graph have constant-bounded indegrees.

Lemma 4.3 Consider a digraph G = (V, E) and consider a collection of walks in G.

Let
F. = the number of traversals of edge e in the walks,
F, = Z(v,w)EE Fowy, for any vertex v,
W, = the number of walks originating at vertex v, and
id, = indegree(v)+ 1.

Then,

> Fluuwlog(Fof/Fiuy) < > Filogid, + > W,log F,.
(vw)eEE vEV Fy>1

Proof. Let F(MU) = Flow) — #walks with (v, w) as the last edge.

Z F(U7w)10g(Fv/F(U7w)) = ZFvlong—l— Z F(U7w)10g(1/F(U7w))
(vw)eEE Fy>1 (vw)eEE

www.manaraa.com

82 CHAPTER 4. TESTING SET EQUALITY

< Z W, log F, + Z (z,v) logF + Z vw) log(l/F(v,w))
Fy>1 (z,w)eE (vw)eEE
(zlog(1/x) is decreasing in [1/e, oc])
= Y WylogF,+ Y > Fyulog(Fu/Fy.)
Fy2>1 Fy2>1 (vw)eE
< Z Wy log F, + Z Fylogid, (entropy inequality). O
F,>1 weV

We are ready to prove the theorem.

Proof of Theorem 4.1. Consider a sequence of m,. cascades of CONS operations,
comprising F' CONS operations totally. The cost of a cascade of f CONS operations equals
O(f) plus the cost of operations performed on parent sets. During any cascade of CoNs
operations, there are at most two active insertions into parent sets. These insertions are
performed when the first node is created by the cascade; all subsequent insertions are
passive. Hence, out of at most 2F insertions into parent sets totally performed during the
sequence of cascades, at most 2m, insertions are active insertions. Applying Lemma 4.2
to the sequence of insertions and searches performed on each parent set and summing

the costs over all parent sets, we see that the total cost of parent set operations equals

O(F +m.logm.+ > filog(F(v)] f:)),
nodes v ¢ parents(v)
A fi>1

where F'(v) denotes the total number of searches performed on parents(v) and f; denotes
the number of searches of element ¢ among these. The double summation bounds the
total cost of all searches performed on the parent sets. This summation can be bounded
using Lemma 4.3. The collection of nodes at the end of the sequence of cascades induces
a directed graph whose vertices are the S-expression nodes and whose edges go from
nodes to their parents. The indegree of each vertex in this graph is at most 2. For each
edge (v, w), define F{, ,,) = the number of searches of node w performed on parents(v).
Delete all edges e such that F, = 0. Applying Lemma 4.3 to the resulting graph, we see
that the summation is bounded by Flog3 + m.log m.. It follows that the cost of the

sequence of cascades equals O(F + m.log m.). The theorem follows. O

www.manaraa.com

4.4. DIRECTIONS FOR FURTHER WORK 83

4.4 Directions for Further Work

The following open problems arise naturally in connection with this work:

1. Is there a data structure for implementing CONS operations in constant amortized

time and constant amortized space, in general?

2. Prove (or disprove) that the problem of maintaining sets under the complete reper-
toire of set operations has no efficient solution. An efficient solution is one that
implements all set operations in time polylogarithmic in the number of update

operations.

3. The Sequence Equality-testing Problem [31] is to maintain a collection of sequences
from a finite, ordered universe under equality-tests and under creations of new se-
quences through insertions and deletions of elements. There exists a data structure
that performs equality-tests of sequences in constant time and updates sequences
in about y/n time/space, where n denotes the length of the updated sequence.
The problem can be solved in O(log m) time/space per update operation if either
sequences are repetition-free or randomization and a small error are permitted; m
denotes the number of update operations. The existence of a deterministic (or even
an error-free randomized) data structure that updates sequences in polylogarithmic

time/space, in general, remains open.

www.manaraa.com

84 CHAPTER 4. TESTING SET EQUALITY

www.manharaa.com

Bibliography

[1] A.V.Aho, J.E.Hopcroft, and J.D.Ullman. THE DESIGN AND ANALYSIS OF COM-

PUTER ALGORITHMS. Addison-Wesley, Reading, Mass., 1974.

[2] A.V.Aho and D.Lee. Storing a dynamic sparse table. In Proc. 27th IEEE FOCS,
1986, 55-60.

[3] M.Ajtai. A lower bound for finding predecessors in Yao’s cell probe model. Combi-
natorica 8, 3, 1988, 235-247.

[4] M.Ajtai, M.Fredman, and J.Komlos. Hash functions for priority queues. Information

and Control 63, 1984, 217-225.
[5] J.Allen. ANaTOMY OF LISP. McGraw Hill Publishing Co., 1978.

[6] J.Bentley and J.Saxe. Decomposable searching problems 1: Static-to-dynamic trans-

formations. J. Algorithms 1, 1980, 301-358.

[7] N.Blum. On the single operation worst-case time complexity of the disjoint set union

problem. STAM J. Computing 15, 1986, 1021-1024.

[8] J.L.Carter and M.N.Wegman. Universal classes of hash functions. J. Comp. Sys.
Sci., 18, 1979, 143-154.

[9] R.Cole. On the dynamic finger conjecture for splay trees. In Proc. 22nd ACM STOC,
1990, 8-17.

[10] R.Cole. On the dynamic finger conjecture for splay trees 2: Finger searching.
Courant Institute Technical Report No. 472, 1989.

85

www.manaraa.com

86 BIBLIOGRAPHY

[11] R.Cole, B.Mishra, J.Schmidt, and A.Siegel. On the dynamic finger conjecture for
splay trees 1: Splay-sorting (logn)-block sequences. Courant Institute Technical
Report No. 471, 1989.

[12] K.Culik II and D.Wood. A note on some tree similarity measures. Info. Process.

Lett. 15, 1982, 39-42.

[13] M.Dietzfelbinger, A.Karlin, K.Mehlhorn, F.Meyer auf der Heide, H.Rohnert, and
R.E.Tarjan. Dynamic perfect hashing: Upper and lower bounds. In Proc. 29th IEEE
FOCS, 1988, 524-531.

[14] M.L.Fredman, J.Komlos, and E.Szemeredi. Storing a sparse table with O(1) worst
case access time. J. ACM 31, 3, 1984, 538-544.

[15] M.L.Fredman and M.E.Saks. The cell probe complexity of dynamic data structures.
In Proc. 21st ACM STOC, 1989, 345-354.

[16] M.L.Fredman, R.Sedgewick, D.D.Sleator, and R.E.Tarjan. The pairing heap: a new
form of self-adjusting heap. Algorithmica 1, 1986, 111-129.

[17] M.L.Fredman and D.E.Willard. Blasting through the information theoretic barrier
with fusion trees. In Proc. 22nd STOC, 1990, 1-7.

[18] I.Galperin and R.L.Rivest. Scapegoat trees. Manuscript, December 1990.

[19] S.Hart and M.Sharir. Nonlinearity of Davenport-Schinzel sequences and of general-

ized path compression schemes. Combinatorica 6, 2, 1986, 151-177.

[20] W.Hoeffding. Probability inequalities for sums of bounded random variables. Jour-
nal of the American Statistical Association 58, 1963, 13-30.

[21] D.E.Knuth. THE ART OF COMPUTER PROGRAMMING 3: SORTING AND SEARCH-
ING. Addison-Wesley, Reading, Mass., 1973.

[22] J.M.Lucas. Arbitrary splitting in splay trees. Rutgers University Tech. Rept. No.
234, June 1988.

[23] K.Mehlhorn. DATA STRUCTURES AND ALGORITHMS 1: SORTING AND SEARCHING.

Springer-Verlag, 1984.

www.manaraa.com

BIBLIOGRAPHY 87

[24] K.Mehlhorn, S.Naher, and M.Rauch. On the complexity of a game related to the
dictionary problem. In Proc. 30th IEEE FOCS, 1989, 546-548.

[25] W.Paul and J.Simon. Decision trees and random access machines. Symposium uber

logik and algorithmik, Zurich 1980; also in Mehlhorn [23, 85-97].

[26] W.Pugh. INCREMENTAL COMPUTATION AND THE INCREMENTAL EVALUATION OF

FUNCTIONAL PROGRAMMING. Ph.D. Thesis, Cornell University, 1988.

[27] W.Pugh and T.Teitelbaum. Incremental computation via function caching. In Proc.

16th ACM POPL, 1989, 315-328.

[28] D.D.Sleator and R.E.Tarjan. Self-adjusting binary search trees. J. ACM, 32, 1985,
652-686.

[29] D.D.Sleator, R.E.Tarjan, and W.P.Thurston. Rotation distance, triangulations, and
hyperbolic geometry. J. Amer. Math. Soc. 1, 3, 1988, 647-681.

[30] R.Sundar. Twists, turns, cascades, deque conjecture, and scanning theorem. In Proc.
30th IEEE FOCS, 1989, 555-559; On the deque conjecture for the splay algorithm.

Combinatorica, to appear.

[31] R.Sundar and R.E.Tarjan. Unique binary search tree representations and equality-

testing of sets and sequences. In Proc. 22nd ACM STOC, 1990, 18-25.

[32] R.E.Tarjan. DATA STRUCTURES AND NETWORK ALGORITHMS. Society for Indus-
trial and Applied Mathematics, Philadelphia, Pa., 1983.

[33] R.E.Tarjan. Sequential access in splay trees takes linear time. Combinatorica 5,

1985, 367-378.

[34] R.E.Tarjan. Amortized computational complexity. STAM J. Appl. Discrete Meth. 6,
1985, 306-318.

[35] M.N.Wegman and J.L.Carter. New hash functions and their use in authentication
and set equality. J. Comp. Sys. Sci. 22, 1981, 265-279.

[36] R.Wilber. Lower bounds for accessing binary search trees with rotations. STAM J.
Computing 18, 1989, 56-67.

www.manaraa.com

88 BIBLIOGRAPHY

[37] D.E.Willard. New trie data structures which support very fast search operations. J.
Comp. Sys. Sci., 28, 1984, 379-394.

[38] A.C.Yao. Should tables be sorted? J. ACM 28, 1981, 615-628.

[39] A.C.Yao. On the complexity of maintaining partial sums. STAM J. Comput. 14, 2,
1985, 277-288.

[40] D.Yellin. Representing sets with constant time equality testing. IBM Tech. Rept.,
April 1990; In Proc. First Annual ACM-SIAM Symposium on Discrete Algorithms,
1990, 64-73.

www.manharaa.com

